• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U.

Bioengineer by Bioengineer
June 20, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ben-Gurion U.

BEER-SHEVA, Israel…June 20, 2017– An innovative technique using light and tiny bubbles to propel microparticles at forces many times greater than previously achieved has been developed by Ben-Gurion University of the Negev researchers.

The new technique could have significant implications in the development of micromotors and optical devices for use in solar cell optics. "What we ultimately hope to achieve is a highly accurate, passive technology for use in a concentrated solar device that would follow the sun without the need for a mechanical tracking mechanism," says Dr. Avi Niv, study co-author.

According to the findings published recently in Nature Scientific Reports, the researchers converted the energy created from light into kinetic motion using nano-sized, laser-generated bubbles. As the bubble expands it acts as a propulsion mechanism for surrounding microparticles. Mechanical manipulation of micro- and nano-scaled objects is important in biology, surface science and microfluidics, and for micromachines in general.

View a video of the experiment. https://www.youtube.com/watch?v=fL9CUoSkYeU

Dr. Niv says, "In our study, a micron-sized object was propelled at unprecedented speeds of close to one meter-per-second, six times faster than what is common in present devices, while still maintaining motion direction control." Dr. Niv and co-author Ido Frenkel, a Ph.D. student, are part of BGU's Alexandre Yersin Department of Solar Energy and Environmental Physics at the Jacob Blaustein Institutes for Desert Research.

"After the bubble initiates movement and bursts, there is no trace of the vapor; the system returns to the original state and the same action can be initiated repeatedly, like a combustion engine."

###

This research was supported by the I-Core Program of the Planning and Budgeting Committee and the Israel Science Foundation, The Ministry of Economy and Industry of Infrastructure Energy and Water, as well as the Adelis Foundation.

About American Associates, Ben-Gurion University of the Negev

American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision: creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. As Ben-Gurion University of the Negev (BGU) looks ahead to turning 50 in 2020, AABGU imagines a future that goes beyond the walls of academia. It is a future where BGU invents a new world and inspires a vision for a stronger Israel and its next generation of leaders. Together with supporters, AABGU will help the University foster excellence in teaching, research and outreach to the communities of the Negev for the next 50 years and beyond. Visit vision.aabgu.org to learn more.

AABGU, headquartered in Manhattan, has nine regional offices throughout the United States. For more information, visit http://www.aabgu.org.

Media Contact

Andrew Lavin
[email protected]
516-944-4486

http://www.aabgu.org

Related Journal Article

http://dx.doi.org/10.1038/s41598-017-03114-z

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

Estimating Rice Canopy LAI Non-Destructively Across Varieties

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.