• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tianjin University makes breakthrough in synthetic genome rearrangement

Bioengineer by Bioengineer
May 23, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © Tianjin University

A synthetic biology team at Tianjin University (TJU) has reported new methods and strategies for genome rearrangement and accelerated the evolution of yeast strains with their three latest studies published in Nature Communications (https://www.nature.com/articles/s41467-018-04157-0, https://www.nature.com/articles/s41467-018-03743-6, https://www.nature.com/articles/s41467-018-03084-4 on May 22, 2018.

Working as an international research consortium, the publications are part of the effort towards the application of chemically synthesized designer yeast chromosomes (Sc 2.0). The collection of seven newly published papers had authors from seven universities in four countries, including Tianjin University and Tsinghua University in China, New York University (NYU) and Johns Hopkins University in the US, the University of Edinburgh and Imperial College London in the UK, as well as the University of Potsdam in Germany.

Designer yeast cells incorporating the Synthetic Chromosome Rearrangement and Modification by the LoxP-Mediated Evolution (SCRaMbLE) system provide a platform for generating genotype diversity. However, leaky expression of the Cre switch, high lethality rates and single strain backgrounds previously limited the application of SCRaMbLE. To overcome these challenges, Bin Jia, Yi Wu and collaborators have developed a precisely controllable SCRaMbLE system in synthetic haploid and diploid yeast.

"How to control the SCRaMbLE process is crucial for organisms with specified advantages, because leaky SCRaMbLE decreases the stability of strains with fixed phenotypes", said Bin Jia, who has constructed a genetic AND gate based on transcriptional control of the GAL promoter and intracellular location of the estrogen-binding domain. This AND gate performed with higher reliability without observed leakage. As a proof of concept, the AND gate control of SCRaMbLE can increase the yield of carotenoids produced in synV yeast.

"The deletion of large fragments containing essential genes in haploid yeast can result in loss of viability, potentially decreasing the diversity generated by SCRaMbLE", said Yi Wu, who came up with an idea to use SCRaMbLE in diploid strains. This strategy allowed the essential alleles in the wild-type chromosomes to remain intact and successfully improved genome diversity. Based on the precise control of SCRaMbLE in diploid strains, the TJU team developed a strategy called Multiplex SCRaMbLE Iterative Cycling (MuSIC) to increase the production of carotenoids up to 38.8-fold through 5 iterative cycles of SCRaMbLE.

With collaborators from NYU, Yi Wu led the study of SCRaMbLEing in heterozygous and interspecies. In this research, they reported a collection of heterozygous diploids by mating synthetic yeast strains with native strains. "Such heterozygous diploid strains take advantage of the flexible genotype of Sc2.0 yeast and robust phenotype of wild type yeast," said Yi Wu, "this study establishes that SCRaMbLE can drive phenotype evolution in heterozygous and interspecies hybrid strains".

Additionally, Yi Wu, Rui-Ying Zhu and collaborators have developed an in vitro DNA SCRaMbLE technology for structural varied library construction and biosynthetic pathway optimization. "This system provides a straightforward way to correlate phenotype and genotype and a new strategy for biochemical optimization, it enables the acceleration of biological discovery and productive industrial microbe evolution", said Yi Wu.

"The SCRaMbLE methods reported are potentially a powerful tool for increasing the production of bio-based chemicals and also for mining deep knowledge", said TJU Professor Ying-Jin Yuan, "it will prove invaluable for both academic and industrial applications". The findings are especially important, and TJU's synthetic biology team has started a new Long March towards accelerating genome evolution to improve human health, prevent and cure disease, provide clean energy and promote a sustainable environment.

###

Media Contact

Mian Qin
[email protected]
86-022-853-56518

http://www.tju.edu.cn/english/

Original Source

http://www.tju.edu.cn/english/news/spotlight/201805/t20180522_306937.htm

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Goat Genome Study Uncovers Genes for Adaptation

October 26, 2025
blank

Exploring TIFY Family Genes in Panax Notoginseng

October 26, 2025

Genetic Diversity and Cytotype Insights in Platostoma

October 26, 2025

Exploring Archaeal Promoters with Explainable CNN Models

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1284 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Allied Health Research Growth in Regional Australia

Dynamic Traffic Control: Predicting Flow for Efficiency

Boosting Midwifery Skills with Virtual Reality Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.