• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Thriving on teamwork: new research shows how brain cells filter information in groups

Bioengineer by Bioengineer
December 31, 2018
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Salk discovery could help to better understand how neurons work together in networks to shape our perceptions of the world

IMAGE

Credit: Salk Institute

LA JOLLA–(December 31, 2018) When we perceive the world around us, certain objects appear to be more noticeable than others, depending on what we do. For example, when we view a forest-covered mountain from a distance, the forest looks like a large green carpet. But as we get closer, we start noticing the individual trees, and the forest fades to the background. What happens in the brain as our experience changes so drastically?

For decades, scientists studying the visual system thought that individual brain cells, called neurons, operate as filters. Some neurons would prefer coarse details of the visual scene and ignore fine details, while others would do the opposite. Every neuron was thought to do its own filtering.

A new study led by Salk Institute researchers challenges this view. The study revealed that the same neurons that prefer coarse details could change to prefer finer details under different conditions. The work, which appeared in the journal Neuron on December 31, 2018, could help to better understand neural mechanisms that shape our perceptions of the world.

“We were trying to look beneath the hood and figure out how these filters work,” says Professor Thomas Albright, director of Salk’s Center for Neurobiology of Vision and a senior author of the study.

“The selectivity of neurons was thought to be stable, but our work has shown that the filtering properties of neurons are much more flexible than was previously thought,” adds study first author Ambarish Pawar, a postdoctoral researcher at Salk.

The team focused on neurons in the visual cortex in an animal model. Animals were shown optical patterns in which the researchers varied the contrast between dark and light areas and measured neurons’ preferences to coarse and fine details. The goal was to see how neurons process these patterns, specifically in the brain’s middle temporal area within the visual cortex. Scientists expected to find that the neurons were strictly “tuned” to perceive either coarse or fine details, but not both. What they found instead that an individual neuron could filter both fine as well as coarse detail, depending on the contrast of the pattern.

By measuring the firing rates of multiple neurons activated by the optical stimuli, the researchers showed that such flexibility was more likely if entire networks of neurons acted as filters rather than individual neurons.

“Our results suggest that the previously common description of individual neurons as filters was incorrect,” says Sergei Gepshtein, a scientist with the Center for Neurobiology of Vision at Salk and co-author of the new study.

“The preference of neurons may shift due to a change in the balance of positive (excitatory) signals and negative (inhibitory) signals by which neurons communicate in the network,” adds Pawar.

The researchers showed that teaming up endows networks of neurons with a high amount of flexibility in their preferences could easily adapt and tune the brain to the changing conditions, just as you might tune a radio to get good reception as you drive.

“We’ve uncovered a new dimension of adaptability of cortical networks,” says Gepshtein. “Our results made it clear that to understand that adaptability we have to rethink what the computing units of the brain are. It is the team of connected neurons–the malleable neural network–that is more suited as such a unit rather than an individual neuron.”

“This unexpected finding could help us shed light on the neural mechanisms that underlie the brains’ enormous adaptability to a continuously changing environment,” says Pawar.

Albright adds that, “even though the study centered on the visual system, this same flexible quality of neural networks is likely to hold true for other parts of the brain.”

Now that they’ve seen the adaptable neuronal networks in action, the researchers next plan to study how changes in these networks affect behavior.

###

Sergey Savel’ev of Loughborough University is also an author of this paper.

The work was funded by the National Institute of Health’s National Eye Institute (NEI; R01 EY018613), an NEI Core Grant for Vision Research (P30 EY019005), the GemCon Family Foundation and Conrad T. Prebys.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk’s mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer’s, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact
Salk Communications
[email protected]
858-453-4100

Tags: BiologyCell BiologyGeneticsMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

September 10, 2025
blank

Fermented Poncirus Extract Inhibits Fat Cell Formation

September 10, 2025

Life at the Edge: Exploring Survival Within Arctic Ice

September 10, 2025

Decoding Animal Decision-Making: NIH Funds Groundbreaking Research on Exploration vs. Exploitation

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

Misconceptions Prevent Certain Cancer Patients from Accessing Hormone Therapy Benefits

New ECU Study Reveals Muscle Loss in Children During Early Cancer Treatment: A Hidden Threat to Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.