• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Three-dimensional view of catalysts in action

Bioengineer by Bioengineer
December 17, 2020
in Science News
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Operando X-ray spectroscopy brings new opportunities for materials and reaction diagnostics – report in Nature Catalysis

IMAGE

Credit: Dr. Dmitry Doronkin, KIT

For understanding the structure and function of catalysts in action, researchers of Karlsruhe Institute of Technology (KIT), in cooperation with colleagues from the Swiss Light Source SLS of Paul Scherrer Institute (PSI) in Switzerland and the European Synchrotron Radiation Facility (ESRF) in France, have developed a new diagnostic tool. Operando X-ray spec-troscopy visualizes the structure and gradients of complex technical catalysts in three dimensions, thus allowing us to look into functioning chemical reactors. The results are re-ported in Nature Catalysis. (DOI: 10.1038/s41929-020-00552-3)

Catalysis is indispensable for many branches. 95% of all chemicals are produced using catalysts. Catalysts also play a key role in energy technologies and environmental protection. Catalysts are materials used to accelerate chemical reactions in order to reduce energy consumption and undesired by-products. This chemico-physical principle is the basis of entire systems, examples being catalytic converters in cars or catalysts in power plants to remove pollutants from their exhausts. Technical and industrial catalysts are also applied in fertilizer and polymer production. Often, they must exhibit high pressure resistance and mechanical strength, while additionally operating under dynamic environmental condi-tions. Even smallest efficiency increases in the removal of pollu-tants, such as carbon monoxide, nitrogen oxides, and fine dust, from exhaust gases or in the production of green hydrogen will result in major advantages for humans and the environment. To improve existing catalytic materials and processes, however, exact understanding of their function is required. “Whether in a large chemical reactor, in a battery, or underneath your car – technical and industrial catalysts often have a highly complex structure,” says Dr. Thomas Sheppard from the Institute for Chemical Tech-nology and Polymer Chemistry (ITCP) of KIT. “To really under-stand how these materials function, we need to take a look inside the reactor when the catalyst is working, ideally with an analytical tool to detect the complex 3D structure of the active catalyst.”

Operando X-ray Spectroscopy Provides 3D Images and Major Chemical Information

Thomas Sheppard directed a study on automotive catalytic con-verters, the results of which are now reported in Nature Catalysis by the researchers involved from KIT, PSI, and ESRF. For their studies, the team used a newly developed setup and carried out tomography experiments at synchrotron radiation facilities in Swit-zerland and France. Computer tomography produces 3D images of a sample, including the exterior and interior, without needing to cut it open. By using a special reactor, the researchers performed to-mography and X-ray spectroscopy to track an active catalytic pro-cess. In this way, they succeeded in observing the 3D structure of an emission control catalyst under conditions just like those in a real automotive exhaust. This so-called operando X-ray spectros-copy provides not only the 3D structure of the sample, but also important chemical information.

Method Suited for Various Catalysts

“Since catalysts often have a rather complex and non-uniform structure, it is important to know whether the entire catalyst volume or only parts of it are performing their chemical function as intend-ed,” explains Johannes Becher from ITCP, one of the main authors of the study. “Operando X-ray spectroscopy lets us see the specif-ic structure and function of every single piece. This tells us wheth-er the catalyst is performing at maximum efficiency or not and, more importantly, it helps us understand the underlying process-es.” During reaction, the team observed a structural gradient of the active copper species within the catalyst, which could not be de-tected previously using conventional analytical tools. This is im-portant diagnostic information in the performance of emission con-trol catalysts. The method itself can be applied to many different catalysts and chemical processes.

New Opportunities for Materials and Reaction Diagnostics

The team’s studies show how visualizing the chemical state of an active catalyst in 3D can bring new opportunities for materials and reaction diagnostics. “Until now, it was not possible to freely select any piece of a working catalyst and understand which reactions take place in there without disturbing it. Now, we can follow exactly which reactions are occurring, where, and why,” says Professor Jan-Dierk Grunwaldt from ITCP. “This is the key to improving our understanding of chemical processes and designing better and more efficient catalysts in future.” Studies using operando X-ray spectroscopy can be carried out at different synchrotron radiation sources, provided that an appropriate sample environment exists. The groups of Jan-Dierk Grunwaldt and Thomas Sheppard will continue their investigations as part of the new Collaborative Re-search Center “TrackAct” at KIT. “TrackAct” is aimed at under-standing and improving the design and efficiency of emission con-trol catalysts.

###

Original Publication

Johannes Becher, Dario Ferreira Sanchez, Dmitry E. Doronkin, Deniz Zengel, Debora Motta Meira, Sakura Pascarelli, Jan-Dierk Grunwaldt, Thomas L. Sheppard: Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography. Nature Catalysis, 2020. DOI: 10.1038/s41929-020-00552-3

For the abstract, click https://www.nature.com/articles/s41929-020-00552-3

Contact for this press release:

Margarete Lehné,
stellv. Pressesprecherin,
Phone: +49 721 608-21157,
margarete lehne?kit edu

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 24,400 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

Media Contact
Monika Landgraf
[email protected]

Original Source

https://www.kit.edu/kit/english/pi_2020_117_three-dimensional-view-of-catalysts-in-action.php

Related Journal Article

http://dx.doi.org/10.1038/s41929-020-00552-3

Tags: BiologyChemistry/Physics/Materials SciencesEarth ScienceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Vasopressin vs Epinephrine: Pediatric Cardiac Arrest Outcomes

Vasopressin vs Epinephrine: Pediatric Cardiac Arrest Outcomes

October 4, 2025
blank

α-L-Fucosidase Isoenzymes: New Glioma Prognostic Markers

October 4, 2025

Inflammatory Markers Shape EGFR-Mutant Lung Cancer

October 4, 2025

Radiomic Changes in Femur During Helical Tomotherapy

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vasopressin vs Epinephrine: Pediatric Cardiac Arrest Outcomes

α-L-Fucosidase Isoenzymes: New Glioma Prognostic Markers

Inflammatory Markers Shape EGFR-Mutant Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.