• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Three-dimensional image of the symbiotic communities around plant roots

Bioengineer by Bioengineer
March 19, 2024
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Animals and plants form complex symbiotic communities with microorganisms, the so-called microbiome. A research team from Heinrich Heine University Düsseldorf (HHU) and the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne has now investigated the three-dimensional microbiota structure around plant roots. In the scientific journal Cell Host & Microbe, they report that microbial community composition varies along the root and that this is influenced by the root spatial metabolism.

Two growth systems

Credit: HHU/ Eliza Loo

Animals and plants form complex symbiotic communities with microorganisms, the so-called microbiome. A research team from Heinrich Heine University Düsseldorf (HHU) and the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne has now investigated the three-dimensional microbiota structure around plant roots. In the scientific journal Cell Host & Microbe, they report that microbial community composition varies along the root and that this is influenced by the root spatial metabolism.

People are colonised by a large number of beneficial organisms. In the intestine in particular, the so-called gut microflora play an important role in human health. Such a phenomenon is also seen in plants – they also possess “microbiota”: Microorganisms that help make nutrients in the soil available and defend the plant against pathogens.

The human intestine comprises different segments and each of these segments has a specific function. Around ten years ago, molecular investigation revealed that the segments of the guts have specific stem cells and different metabolic activities. The various physiological and genetic differences in the intestine result in differential microorganism colonisation in each segment of the intestine. It is now known that the gut microbiota have a highly complex three-dimensional biogeography.

In order to investigate whether the root microbiota also display biogeographical differences, three research teams at HHU and MPIPZ conducted joint research on the model plant thale cress (Arabidopsis thaliana). The researchers took a so-called “multiomics” approach, including “transcriptomics” – the analysis of all RNA molecules in the tissue – and “metabolomics” – the study of the metabolic network – as well as other disciplines such as synthetic biology and bioinformatics.

In the current issue of Cell Host & Microbe, the biologists describe the development of two growth systems to enable them to analyse the root microbiota of Arabidopsis: CD-Rhizotrons and ArtSoil growth media. With the help of these two systems, they proved the existence of spatial organisation of the microbiota along the longitudinal axis of the root, as well as a corresponding differential accumulation of plant metabolites and metabolic activities.

Lead and corresponding author Dr Eliza Loo from the Institute for Molecular Physiology at HHU comments: “Using bioinformatic and genetic methods, we identified three so-called SWEET sugar transporters, which contribute to the distribution of sugar and other metabolites along the root. These transporters are necessary for the spatial colonisation by root bacteria.”

“We were able to decode the complex metabolic network between microbes and host – in this case the plant,” adds Dr Tin Yau Pang from the Computational Cell Biology research group at HHU.

“These findings can contribute to optimising microbial communities to improve plant protection from pathogens, leading to better plant health,” says Dr Paloma Durán from MPIPZ, the second lead author of the study.

Professor Dr Wolf Frommer, Head of the HHU Institute for Molecular Physiology and corresponding author, comments: “In order to understand the spatial colonisation of the host microbiome, a much more detailed analysis of the 3D biogeography of both the plant and the microbial species will be necessary. Our current publication lays the foundation for such work. Studies should now be expanded to crop plants such as barley.”

Original publication:

Loo, E.P, Durán, P., Pang, T.Y., Westhoff, P., Deng, C., Durán, C., Lercher, M., Garrido-Oter, R., and Frommer, W.B. Sugar transporters spatially organize microbiota colonization along the longitudinal root axis of Arabidopsis. Cell Host & Microbe 32, 1-14 (2024).

DOI: 10.1016/j.chom.2024.02.014



Journal

Cell Host & Microbe

DOI

10.1016/j.chom.2024.02.014

Article Title

W.B. Sugar transporters spatially organize microbiota colonization along the longitudinal root axis of Arabidopsis

Article Publication Date

12-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    63 shares
    Share 25 Tweet 16
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.