• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

This 3D printer doesn’t gloss over the details

Bioengineer by Bioengineer
December 2, 2020
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new system enables realistic variations in glossiness across a 3D-printed surface; the advance could aid fine art reproduction and the design of prosthetics

IMAGE

Credit: Courtesy of the researchers

Shape, color, and gloss.

Those are an object’s three most salient visual features. Currently, 3D printers can reproduce shape and color reasonably well. Gloss, however, remains a challenge. That’s because 3D printing hardware isn’t designed to deal with the different viscosities of the varnishes that lend surfaces a glossy or matte look.

MIT researcher Michael Foshey and his colleagues may have a solution. They’ve developed a combined hardware and software printing system that uses off-the-shelf varnishes to finish objects with realistic, spatially varying gloss patterns. Foshey calls the advance “a chapter in the book of how to do high-fidelity appearance reproduction using a 3D printer.”

He envisions a range of applications for the technology. It might be used to faithfully reproduce fine art, allowing near-flawless replicas to be distributed to museums without access to originals. It might also help create more realistic-looking prosthetics. Foshey hopes the advance represents a step toward visually perfect 3D printing, “where you could almost not tell the difference between the object and the reproduction.”

Foshey, a mechanical engineer in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), will present the paper at next month’s SIGGRAPH Asia conference, along with lead author Michal Piovarči of the University of Lugano in Switzerland. Co-authors include MIT’s Wojciech Matusik, Vahid Babaei of the Max Planck Institute, Szymon Rusinkiewicz of Princeton University, and Piotr Didyk of the University of Lugano.

Glossiness is simply a measure of how much light is reflected from a surface. A high gloss surface is reflective, like a mirror. A low gloss, or matte, surface is unreflective, like concrete. Varnishes that lend a glossy finish tend to be less viscous and to dry into a smooth surface. Varnishes that lend a matte finish are more viscous — closer to honey than water. They contain large polymers that, when dried, protrude randomly from the surface and absorb light. “You have a bunch of these particles popping out of the surface, which gives you that roughness,” says Foshey.

But those polymers pose a dilemma for 3D printers, whose skinny fluid channels and nozzles aren’t built for honey. “They’re very small, and they can get clogged easily,” says Foshey.

The state-of-the-art way to reproduce a surface with spatially varying gloss is labor-intensive: The object is initially printed with high gloss and with support structures covering the spots where a matte finish is ultimately desired. Then the support material is removed to lend roughness to the final surface. “There’s no way of instructing the printer to produce a matte finish in one area, or a glossy finish in another,” says Foshey. So, his team devised one.

They designed a printer with large nozzles and the ability to deposit varnish droplets of varying sizes. The varnish is stored in the printer’s pressurized reservoir, and a needle valve opens and closes to release varnish droplets onto the printing surface. A variety of droplet sizes is achieved by controlling factors like the reservoir pressure and the speed of the needle valve’s movements. The more varnish released, the larger the droplet deposited. The same goes for the speed of the droplet’s release. “The faster it goes, the more it spreads out once it impacts the surface,” says Foshey. “So we essentially vary all these parameters to get the droplet size we want.”

The printer achieves spatially varying gloss through halftoning. In this technique, discrete varnish droplets are arranged in patterns that, when viewed from a distance, appear like a continuous surface. “Our eyes actually do the mixing itself,” says Foshey. The printer uses just three off-the-shelf varnishes — one glossy, one matte, and one in between. By incorporating these varnishes into its preprogrammed halftoning pattern, the printer can yield continuous, spatially varying shades of glossiness across the printing surface.

Along with the hardware, Foshey’s team produced a software pipeline to control the printer’s output. First, the user indicates their desired gloss pattern on the surface to be printed. Next, the printer runs a calibration, trying various halftoning patterns of the three supplied varnishes. Based on the reflectance of those calibration patterns, the printer determines the proper halftoning pattern to use on the final print job to achieve the best possible reproduction. The researchers demonstrated their results on a variety of “2.5D” objects — mostly-flat printouts with textures that varied by half a centimeter in height. “They were impressive,” says Foshey. “They definitely have more of a feel of what you’re actually trying to reproduce.”

The team plans to continue developing the hardware for use on fully-3D objects. Didyk says “the system is designed in such a way that the future integration with commercial 3D printers is possible.”

This work was supported by the National Science Foundation and the European Research council.

###

Written by Daniel Ackerman, MIT News Office

Additional background

Paper: “Towards Spatially Varying Gloss Reproduction for 3D Printing”
https://gfx.cs.princeton.edu/pubs/Piovar%C4%8Di_2020_TSV/glossprint_sga20.pdf

Media Contact
Abby Abazorius
[email protected]

Original Source

https://news.mit.edu/2020/3d-printer-gloss-1202

Tags: Computer ScienceElectrical Engineering/ElectronicsHardwareMultimedia/Networking/Interface DesignResearch/DevelopmentSoftware EngineeringTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
blank

March5 Drives Trim28 Degradation to Preserve β-Cells

August 1, 2025

Breakthrough in Melanoma Guidance System Offers New Hope to Halt Metastasis

August 1, 2025

SFU Researchers Unveil Innovative Tool for Enhanced Blender-Style Lighting Control in Photographs

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

March5 Drives Trim28 Degradation to Preserve β-Cells

Breakthrough in Melanoma Guidance System Offers New Hope to Halt Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.