• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Think simpler, flow faster

by
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
Solutions generated by model B3 tested with circular obstacles
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Analyzing and simulating fluid flow is a challenging mathematical problem that impacts various scenarios, including video game engines, ocean current modeling and hurricane forecasting. The core of this challenge lies in solving the Navier–Stokes equations, a set of classical equations that describe fluid dynamics. Recently, deep learning has emerged as a powerful tool to accelerate equation solving. Using this technique, a team designed a novel approach that can provide accurate solutions 1,000 times faster than traditional equation solvers. The team’s study was published June 26 in Intelligent Computing, a Science Partner Journal.

Analyzing and simulating fluid flow is a challenging mathematical problem that impacts various scenarios, including video game engines, ocean current modeling and hurricane forecasting. The core of this challenge lies in solving the Navier–Stokes equations, a set of classical equations that describe fluid dynamics. Recently, deep learning has emerged as a powerful tool to accelerate equation solving. Using this technique, a team designed a novel approach that can provide accurate solutions 1,000 times faster than traditional equation solvers. The team’s study was published June 26 in Intelligent Computing, a Science Partner Journal.

The team tested their approach on a three-variable lid-driven cavity flow problem in a large 512 × 512 computational domain. In the experiment, conducted on a consumer desktop system with an Intel Core i5 8400 processor, their method achieved inference latencies of just 7 milliseconds per input, a great improvement compared to the 10 seconds required by traditional finite difference methods.

Apart from being swift, the new deep learning approach is also low-cost and highly adaptable, thus could be used to make real-time predictions on everyday digital devices. It integrates the efficiency of supervised learning techniques with the necessary physics of traditional methods.

Although other supervised learning models can rapidly simulate and predict the closest numerical solutions to the Navier–Stokes equations, their performance is constrained by the labeled training data, which could lack the size, diversity and fundamental physical information needed to solve the equations.

To work around data-driven limitations and reduce computation load, the team trained a series of models stage by stage in a weakly supervised way. Initially, only a minimal amount of pre-computed “warm-up” data was used to facilitate model initialization. This allowed the base models to quickly adapt to the fundamental dynamics of fluid flow before progressing to more complex scenarios and eliminated the need for extensive labeled datasets.

All models are based on a convolutional U-Net architecture, which the team customized for complex fluid dynamics problems. As a modified autoencoder, the U-Net consists of an encoder that compresses the input data into compact representations, and a decoder that reconstructs this data back into high-resolution outputs. The encoder and decoder are connected through skip connections, which help preserve important features and improve the quality of the outputs.

To ensure the outputs adhere to the necessary constraints, the team also developed a custom loss function that incorporates both data-driven and physics-informed components.

Like traditional methods, the team’s approach uses a 2D matrix to represent the computational domain, which sets the determining constraints of the fluid dynamics problems. The constraints include geometric constraints such as the size and shape of the domain, physical constraints such as the physical features of the flow and applicable physical laws, and boundary conditions that define the problems mathematically. This format allows unknown variables to be directly integrated into the constraints as part of the input data so that the trained models can handle various boundary conditions and geometries, including unseen complicated cases.



Journal

Intelligent Computing

DOI

10.34133/icomputing.0093

Article Title

Stacked Deep Learning Models for Fast Approximations of Steady-State Navier–Stokes Equations for Low Re Flow

Article Publication Date

26-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

October 13, 2025
Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1237 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predicting AML Chemosensitivity with ARTN and CCL23

Immunity to Measles Reaches 90% in British Columbia’s Lower Mainland

2024 NASEM Long COVID Definition: Research Foundation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.