• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

These bats deter predators by buzzing like hornets

Bioengineer by Bioengineer
May 9, 2022
in Biology
Reading Time: 4 mins read
0
The greater mouse-eared bat (Myotis myotis)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In Batesian mimicry, a harmless species imitates a more dangerous one in an evolutionary “ruse” that affords the mimic protection from would-be predators. Now, researchers reporting in Current Biology on May 9, 2022, have discovered the first case of acoustic Batesian mimicry in mammals and one of very few documented in any species: greater mouse-eared bats imitate the buzzing sound of a stinging insect to discourage predatory owls from eating them.

The greater mouse-eared bat (Myotis myotis)

Credit: Marco Scalisi

In Batesian mimicry, a harmless species imitates a more dangerous one in an evolutionary “ruse” that affords the mimic protection from would-be predators. Now, researchers reporting in Current Biology on May 9, 2022, have discovered the first case of acoustic Batesian mimicry in mammals and one of very few documented in any species: greater mouse-eared bats imitate the buzzing sound of a stinging insect to discourage predatory owls from eating them.

“In Batesian mimicry, a non-armed species imitates an armed one to deter predators,” said Danilo Russo of Università degli Studi di Napoli Federico II in Portici, Italy. “Imagine a bat that has been seized but not killed by the predator. Buzzing might deceive the predator for a fraction of a second—enough to fly away.”

Russo made the discovery while conducting field research in which he frequently caught the bats in mist-netting operations. “When we handled the bats to take them out of the net or process them, they invariably buzzed like wasps,” Russo says.

They recognized the buzzing as some sort of unusual distress call. They thought there might be different reasons the bats made the sound. Perhaps it could send a warning to others of its species or deter predators. Russo and team put the idea aside and continued along with other research questions. Years later, they decided it was time to design a careful experiment to test their ideas about that buzzing. 

In their studies, they first looked at the acoustic similarity between buzzing sounds of the bats and stinging social hymenopteran insects. Next, they played those sounds back to captive owls to see how they would react.

Different owls reacted in variable ways, likely depending on their prior experiences. Nevertheless, they consistently reacted to insect and bat buzzes by moving farther away from the speaker. In contrast, the sound of potential prey got them to move closer. The researchers say the findings provide the first example of interspecific mimicry between mammals and insects as well as one of few examples of acoustic mimicry.

Interestingly, their analysis of the sounds revealed that the similarity between buzzes broadcast by hornets and bats was most evident only once acoustic parameters that the owls can’t hear were excluded from the analysis. In other words, Russo explains, the buzzing sounds are even more similar when heard the way owls hear them.

Do owls avoid that buzzing sound because they’ve been stung before? Russo says that stinging insects likely do sting owls, but they don’t have the data to prove it. There is other evidence that birds avoid such potentially noxious insects, however. For example, when hornets move into nest boxes or tree cavities, birds in general won’t even explore them and they certainly don’t nest there.

Because the three study species in question all share many of the same spaces, such as buildings, rock crevices, or caves, there is likely to be plenty of opportunity for them to interact, according to the researchers. Even so, they find this intricate relationship among distantly related species intriguing.

“It is somewhat surprising that owls represent the evolutionary pressure shaping acoustic behavior in bats in response to unpleasant experiences owls have with stinging insects,” says Russo. “It is just one of the endless examples of the beauty of evolutionary processes!”

Russo notes that there are many other vertebrate species that also buzz when disturbed and hundreds of bat species, some of which may use similar strategies. They hope to look for these interesting dynamics within other interacting groups in future studies.

###

Current Biology, Ancillotto et al. “Batesian acoustic mimicry in mammals: bats mimic hymenopteran sounds to deter predators” https://www.cell.com/current-biology/fulltext/S0960-9822(22)00486-9

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit http://www.cell.com/current-biology. To receive Cell Press media alerts, contact [email protected].



Journal

Current Biology

DOI

10.1016/j.cub.2022.03.052

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Bats mimic hymenopteran sounds to deter predators

Article Publication Date

9-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gastric Microbiome’s Role in Cancer Risk and Prognosis

Revolutionizing Optimization: Deep Learning for Complex Systems

Health Insurance Disparities Impact Midlife Depression Trends

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.