• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Theoretical breakthrough shows quantum fluids rotate by corkscrew mechanism

Bioengineer by Bioengineer
June 1, 2020
in Chemistry
Reading Time: 5 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by the Center for Nanoscale Materials.

If a drop of creamer falls from a spoon into a swirling cup of coffee, the whirlpool drags the drop into rotation. But what would happen if the coffee had no friction — no way to pull the drop into a synchronized spin?

Superfluids — also called quantum fluids — appear in a wide range of systems and applications. For example, cosmological superfluids meld with each other during neutron star mergers, and scientists use superfluid helium to cool magnetic resonance imaging (MRI) machines.

The fluids have unique and useful properties governed by quantum mechanics — a framework usually used to describe the realm of the very small. For superfluids, however, these quantum mechanical properties dominate on a larger, macroscopic scale. For example, superfluids lack viscosity, a sort of internal friction that allows the fluid to resist and cause motion.

“It doesn’t just look like a corkscrew — its functionality is similar, too.” — Dafei Jin, scientist at DOE‘s Center for Nanoscale Materials at Argonne

This lack of viscosity grants the liquids unusual abilities, like traveling freely through pipes with no loss of energy or remaining still inside a spinning container. But when it comes to rotational motion, scientists struggle to understand how rotating superfluids transfer angular momentum — a quality that speaks to how fast the liquids will spin.

In a recent study, scientists from the U.S. Department of Energy’s (DOE) Argonne National Laboratory collaborated with scientists from the National High Magnetic Field Laboratory (MagLab) in Tallahassee, Florida, and Osaka City University in Japan to perform advanced computer simulations of merging rotating superfluids, revealing a peculiar corkscrew-shaped mechanism that drives the fluids into rotation without the need for viscosity.

When a rotating raindrop falls into a pond, viscosity enables the drop to drive the surrounding water into rotation, generating vortices or eddy currents in the process. This viscous drag reduces the difference in motion between the two bodies. A superfluid, however, allows this difference.

“The atoms stay roughly in the same place when superfluids transfer angular momentum, unlike with eddy currents in classical fluids,” said Dafei Jin, a scientist at Argonne’s Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility. “Rather than through the convection of particles, it’s more efficient for superfluid atoms to transfer angular momentum through quantum mechanical interactions.”

These quantum mechanical interactions give rise to a mesmerizing effect, exhibited in the team’s simulations performed using the Carbon computer cluster at CNM. The scientists simulated the merging of rotating and stationary drops of a superfluid state of matter called a Bose-Einstein Condensate (BEC).

“We chose to simulate Bose-Einstein Condensates because they’re relatively general superfluid systems that display characteristics shared by various other quantum fluids,” said Wei Guo, a professor at Florida State University (FSU) and a researcher at the MagLab.

Toshiaki Kanai, a graduate student of Guo’s in FSU‘s Physics Department, led the design of the simulations, which model the interaction between two BEC drops from the moment they come into contact until they merge completely. Tsubota Makoto, a professor at Osaka City University and expert in quantum fluid simulation, also contributed to the project design and interpretation of the results.

“We were particularly fortunate to work with Dafei Jin at CNM, who helped us solve many technical challenges,” said Guo, a long-time collaborator with Jin, “and Argonne has computer clusters and other computational resources that allowed us to efficiently perform the simulation many times under different conditions to obtain systematic results.”

View related video here.

As the drops draw close to each other, the corkscrew shape spontaneously appears and extends into both drops, growing in size and influence until the two drops are mixed and rotating at the same speed.

“It doesn’t just look like a corkscrew — its functionality is similar, too,” said Jin. “It transfers angular momentum by twisting into the samples, causing them to speed up or slow down their rotation.”

The simulation result is applicable to many laboratory BEC systems of various sizes, from tens of nanometers to hundreds of microns — or millionths of meters. The results also hold true for larger superfluid systems. Despite differences in scale all superfluid systems exhibit common fundamental properties linked to their quantum nature.

“Although we focused on a very small system, the results are general,” said Guo. “The insight we gained into how these interactions occur can help physicists inform models of systems from nanoscale ultracold atoms to cosmological-scale superfluids in astrophysical systems.”

For example, superfluid helium can exist at the centimeter and meter scales, and BECs in neutron stars can be, well, astronomical in size. When neutron stars merge, they act as two very large, rotating superfluid drops in some respects, and the discovery of the corkscrew mechanism could inform astrophysical models of these mergers.

The scientists hope to test their theoretical discovery of the corkscrew mechanism through experiment. Quantum liquids have implementations in cold atom systems, superfluids, superconductors and more, and basic science research of their behavior will aid in development of applications of these systems.

###

A paper on the study, titled “Torque and Angular-Momentum Transfer in Merging Rotating Bose-Einstein Condensates,” was published in Physical Review Letters in March.

The MagLab is supported by the National Science Foundation and the state of Florida. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science.

About Argonne’s Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE‘s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Faciities/User-Facilities-at-a-Glance.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Media Contact
Diana Anderson
[email protected]

Original Source

https://www.anl.gov/article/theoretical-breakthrough-shows-quantum-fluids-rotate-by-corkscrew-mechanism

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.124.105302

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Low and High-Tech Tools for Activity Schedules

Switching MS Patients: Anti-CD20 to Cladribine Tablets

Revolutionary ARDitox Uncovers Cross-Reactive TCR Epitopes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.