• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The way breast cancer genes act could predict your treatment

Bioengineer by Bioengineer
February 11, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: G.L. Kohuth, Michigan State University

EAST LANSING, Mich. — A Michigan State University breast cancer researcher has shown that effective treatment options can be predicted based on the way certain breast cancer genes act or express themselves.

The research, published in the journal Oncogene, offers up proof that gene expression patterns can help direct the type of therapy a patient might receive, paving the way for more targeted and personalized approaches to care.

The National Institutes of Health and the Susan G. Komen Foundation funded the study.

"Breast cancer has numerous subtypes," said Eran Andrechek, a physiology professor in the College of Human Medicine. "Treatments for these various subtypes have to be different because there are different genes that drive the cancer."

Estrogen- or progesterone-receptor positive breast cancer, where hormones drive cancer growth, is one subtype. Other subtypes include human epidermal growth factor receptor 2, or HER2, which is a protein that also promotes the development of the disease, and triple-negative breast cancer, or TNBC. This cancer type isn't driven by either the HER2 protein or hormone receptors and is the one that Andrechek focused on in his study.

His research, also led by doctoral student Jing-Ru Jhan, first examined the unique genetic characteristics and differences within each TNBC tumor. Then Andrechek's team took the genomic information they gathered and compared it to various drugs that could target the specific tumor activity.

"Triple-negative breast cancer is highly aggressive and currently there are limited treatment options," Andrechek said. "By looking at the particular gene expression patterns of this cancer and determining the pathways that were activated, or turned on, we identified certain drugs that could turn these pathways off and stop tumor growth."

Andrechek's study discovered that a three-drug combination, including two FDA-approved drugs – Afatinib and Trametinib – also targeted a specific pathway associated with triple-negative breast cancer and together, were effective at stopping the cancer's growth. Currently, both drugs are commonly used for other types of cancers.

Andrechek said his proof-of-concept study is a positive first step in determining the feasibility of this type of treatment approach.

"We tested several other drug combinations too and when we expanded our study to include human breast cancers that were grown in mice, we received the same positive result," Andrechek said. "This gives us a much clearer indication that targeted, individualized breast cancer treatment is viable."

###

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Media Contact

Sarina Gleason
[email protected]
517-355-9742
@MSUnews

http://msutoday.msu.edu/journalists/

Share12Tweet7Share2ShareShareShare1

Related Posts

Sleep Duration Linked to Depression in Chinese Seniors

November 12, 2025

Violence Against Women in North-East Piedmont Emergency Rooms

November 12, 2025

Shift Work and Chronotype Affect Hong Kong Nurses’ Sleep

November 12, 2025

Next-Generation Nanoparticle-Stem Cell Hybrids Pave the Way for Advanced Bone Regeneration

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sleep Duration Linked to Depression in Chinese Seniors

Muscle MRI Enhances Nasopharyngeal Cancer Prognosis

RPL17 Drives Breast Cancer via MAPK Activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.