• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The transgenic key to more productive crops

Bioengineer by Bioengineer
January 3, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Transgenic tobacco plants engineered with synthetic metabolic pathways designed to bypass the inefficient and costly side effects of natural photorespiration show large increases in productivity – as much as 40% over unmodified tobacco plants, a new study says. The results suggest a method that could be used to overcome the inherent limitations of natural photosynthesis to improve productivity and yields for other important crops globally, such as rice or wheat. As existing efforts to boost crop yields, like increased use of pesticides, fertilizers and irrigation, are now largely optimized, photosynthetic efficiency is a major focus. The carbon-fixing enzyme RuBisCO, which is critical in transforming atmospheric carbon dioxide into plant biomass, also reacts with oxygen to produce dysfunctional biproducts. Photorespiration detoxifies these byproducts and converts them into useful molecules. However, this process comes at a cost of energy lost and it also reduces the photosynthetic efficiency – a key determinant of yield potential – of some of the planet’s most important crops by 20-50%. Overcoming the yield penalty imposed by inefficient photorespiratory pathways has the potential to greatly increase crop productivity, an achievement which is necessary if our rapidly growing global agricultural demand is to be met, according to the authors. Using tobacco as a model crop, Paul South and colleagues introduced non-native and synthetic metabolic pathways that more efficiently recycled the biproducts of RuBisCO oxygenation. Tobacco was used due partly to its ease of genetic manipulation as well as because of its hardy nature and bountiful seed production, which make it well-suited for research purposes. Building upon previous work, South et al. engineered a transgenic variety of the plant which carried a synthetic glycolate metabolic pathway designed to bypass the regular routes of natural photorespiration. According to the results of experiments in both greenhouse conditions and in the field under agricultural conditions, the synthetic pathways drove large increases in dry weight biomass. In a Perspective, Marion Eisenhut and Andreas Weber discuss the implications of the study’s findings in more detail.

###

Media Contact
Press Package Team
[email protected]
202-326-6440
http://dx.doi.org/10.1126/science.aat9077

Tags: AgriculturePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025
Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025

Sodium Selenite Boosts Fermentation in Alfalfa Silage

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

Gastroesophageal Reflux Differences in Preterm Infants Fed Milk

Innovative Personalized Risk Score Promises Enhanced Ovarian Cancer Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.