• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The transgenic key to more productive crops

Bioengineer by Bioengineer
January 3, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Transgenic tobacco plants engineered with synthetic metabolic pathways designed to bypass the inefficient and costly side effects of natural photorespiration show large increases in productivity – as much as 40% over unmodified tobacco plants, a new study says. The results suggest a method that could be used to overcome the inherent limitations of natural photosynthesis to improve productivity and yields for other important crops globally, such as rice or wheat. As existing efforts to boost crop yields, like increased use of pesticides, fertilizers and irrigation, are now largely optimized, photosynthetic efficiency is a major focus. The carbon-fixing enzyme RuBisCO, which is critical in transforming atmospheric carbon dioxide into plant biomass, also reacts with oxygen to produce dysfunctional biproducts. Photorespiration detoxifies these byproducts and converts them into useful molecules. However, this process comes at a cost of energy lost and it also reduces the photosynthetic efficiency – a key determinant of yield potential – of some of the planet’s most important crops by 20-50%. Overcoming the yield penalty imposed by inefficient photorespiratory pathways has the potential to greatly increase crop productivity, an achievement which is necessary if our rapidly growing global agricultural demand is to be met, according to the authors. Using tobacco as a model crop, Paul South and colleagues introduced non-native and synthetic metabolic pathways that more efficiently recycled the biproducts of RuBisCO oxygenation. Tobacco was used due partly to its ease of genetic manipulation as well as because of its hardy nature and bountiful seed production, which make it well-suited for research purposes. Building upon previous work, South et al. engineered a transgenic variety of the plant which carried a synthetic glycolate metabolic pathway designed to bypass the regular routes of natural photorespiration. According to the results of experiments in both greenhouse conditions and in the field under agricultural conditions, the synthetic pathways drove large increases in dry weight biomass. In a Perspective, Marion Eisenhut and Andreas Weber discuss the implications of the study’s findings in more detail.

###

Media Contact
Press Package Team
[email protected]
202-326-6440
http://dx.doi.org/10.1126/science.aat9077

Tags: AgriculturePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Linkage: Connect DNA Regulatory Peaks to Genes

October 7, 2025
Edo Cattle Market Study: High Tick Diversity Observed

Edo Cattle Market Study: High Tick Diversity Observed

October 7, 2025

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

October 7, 2025

How Sleep Patterns Influence Health, Cognition, Lifestyle, and Brain Structure

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    988 shares
    Share 395 Tweet 247
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Blood Test for ME/Chronic Fatigue Syndrome Unveiled

Cube-Shaped CoSe2/Fe7Se8 Composites Boost Supercapacitor Performance

Calorie Labeling Associated with 2% Average Decrease in Menu Item Energy Content

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.