• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The time is RIPE to transform agriculture and feed the world

Bioengineer by Bioengineer
September 15, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Brian Stauffer/University of Illinois

Political and agricultural leaders gathered at the University of Illinois today to see transformative work by Realizing Increased Photosynthetic Efficiency (RIPE) that has increased yields by 20 percent. The research project announced that it will continue work to address the global food challenge with the support of a $45 million, five-year reinvestment from the Bill & Melinda Gates Foundation (BMGF), the Foundation for Food and Agriculture Research (FFAR), and the U.K. Department for International Development (DFID).

"Today's report on world hunger and nutrition from five UN agencies reinforces our mission to work doggedly to provide new means to eradicate world hunger and malnutrition by 2030 and beyond," said RIPE Director Stephen Long, Gutgsell Endowed Professor of Crop Sciences and Plant Biology at the Carl R. Woese Institute for Genomic Biology at the University of Illinois. "This investment is timely–annual yield gains are stagnating and means to achieve substantial improvement must be developed now if we are to provide sufficient food by 2030 and beyond for a growing and increasingly urban world population when food production must also adapt sustainably to a changing climate."

"While no single strategy is going to get us there, our successes in redesigning photosynthesis are exciting," said RIPE Deputy Director Don Ort, USDA/ARS Photosynthesis Research Unit and Robert Emerson Professor in Plant Biology and Crop Sciences at Illinois. "RIPE has validated that photosynthesis can be engineered to be more efficient to help close the gap between the trajectory of yield increase and the trajectory of demand increase."

Half a century of photosynthesis research, with several landmark discoveries at Illinois through state and federal partnerships, enabled RIPE to simulate the 170-step process of photosynthesis from the inner workings of enzymes to interactions between neighboring plants in the field. RIPE used these models to identify seven potential pipelines to improve photosynthesis, and with the support of an initial $25 million, five-year grant from the Gates Foundation, began work in 2012 to try to turn their ideas into sustainable yield increases.

Last year, RIPE published work in Science that one of these pipelines could increase crop productivity by 20 percent – a dramatic increase compared to typical annual yield gains of just one percent or less. Two other RIPE pipelines have now shown even greater yield improvements in greenhouse and preliminary field trials.

"Our modeling predicts that several of these improvements can be combined to achieve additive yield increases, providing real hope that a 50 percent yield increase in just three decades is possible," said Long. "With the reinvestment, a central priority will be to move these improved photosynthesis traits into commodity crops of the developed world, like soybeans, as well as crops that matter in the developing world, including cassava and cowpeas."

RIPE and its funders will ensure their high-yielding food crops are globally available, particularly in Sub-Saharan Africa and Southeast Asia, and affordable for smallholder farmers to help feed the world's hungriest and reduce poverty.

But we still have a long road ahead of us: it takes about fifteen years from discovery until crops with these transformative biotechnologies are available for farmers. It will therefore be well into the 2030s before such superior crops are seen at scale in farmers' fields.

###

Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun's energy into food to sustainably increase worldwide food productivity with support from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research, and the U.K. Department for International Development.

RIPE is led by the University of Illinois in partnership with the USDA/ARS, University of Essex, Lancaster University, Australian National University, Chinese Academy of Sciences, Commonwealth Scientific and Industrial Research Organisation, University of California, Berkeley, and Louisiana State University.

Media Contact

Claire Benjamin
[email protected]
217-244-0941
@IGBIllinois

http://www.igb.uiuc.edu

Original Source

http://ripe.illinois.edu/news/the-time-is-ripe-to-transform-agriculture-and-feed-the-world

Share12Tweet7Share2ShareShareShare1

Related Posts

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

Severe Pregnancy Sickness Linked to Over 50% Increase in Risk of Mental Health Disorders

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.