• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The three dimensions of a flower

Bioengineer by Bioengineer
December 7, 2022
in Biology
Reading Time: 4 mins read
0
Rhytidophyllum auriculatum x vernicosum
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To better understand the evolution of flowers, a research team in biology from Université de Montréal, the Montreal Botanical Garden and McGill University have succeeded in using photogrammetry to quickly and precisely build, in three dimensions, a model of a flower from two-dimensional images.

Rhytidophyllum auriculatum x vernicosum

Credit: Marion Leménager, Université de Montréal

To better understand the evolution of flowers, a research team in biology from Université de Montréal, the Montreal Botanical Garden and McGill University have succeeded in using photogrammetry to quickly and precisely build, in three dimensions, a model of a flower from two-dimensional images.

Photogrammetry is commonly used by geographers to reconstruct the topography of a landscape. However, this is the first time that scientists have used the technique to design 3D models of flowers in order to better study them.

They results of their experiment were published in October in the journal New Phytologist.

Photogrammetry is an approach based on information gathered from numerous photos taken from all angles. Thanks to the triangulation of common points present on the photos, it is possible to reconstruct a 3D model – in this case, of a flower. Colours can then be applied to the 3D flower using information from the photos.

Attracting pollinators by shape and colour

Flowers are complex and extremely varied three-dimensional structures. Characterizing their forms is important in order to understand their development, functioning and evolution. Indeed, 91 per cent of flowering plants interact with pollinators to ensure their reproduction in a 3D environment. The morphology and colours of the flowers act like magnets on pollinators in order to attract them. Yet the 3D structure of flowers is rarely studied.

The use of photogrammetry has real advantages compared to other existing methods, in particular X-ray microtomography, which is by far the most widely used method to build 3D flower models.

“Photogrammetry is much more accessible, since it’s cheap, requires little specialized equipment and can even be used directly in nature,” said Marion Leménager, a doctoral student in biological sciences at UdeM and lead author of the study. “In addition, photogrammetry has the advantage of reproducing the colours of flowers, which is not possible with methods using X-rays.”

It was Daniel Schoen, a McGill biology professor, who first had the idea of ​​applying photogrammetry to flowers, while doing research at Institut de recherche en biologie végétale. The first results, although imperfect, were enough to convince Leménager to devote a chapter of her thesis to it.

“The method is not perfect,” she said. “Some parts of the flowers remain difficult to reconstruct in 3D, such as reflective, translucent or very hairy surfaces.”

Answering questions on flowers’ evolution

“That said,” added UdeM biology professor Simon Joly, “thanks to the living collections of the Montreal Botanical Garden, the study of plants of the Gesneriaceae family – plants originating from subtropical to tropical regions, of which the African violet is one of the best known representatives – demonstrates that 3D models produced using this technique make it possible to explore a large number of questions on the evolution of the shape and colour of flowers.

“We have also shown that photogrammetry works at least as well as X-ray methods for visible flower structures,” said Joly, who conducts research at the Botanical Garden.

Photogrammetry has the potential to boost research on flower evolution and ecology by providing a simple way to access three-dimensional morphological data, the researchers believe. Databases of flowers – or even of complete plants – could give scientists and the general public a way to see the   unique features of plant species that for now remain hidden.

An open-access, detailed protocol has been made available to promote the use of this method in the context of the comparative study of floral morphology. The goal of free access to natural science collections of this sort is to help stimulate the study of the evolution of flower morphology at large taxonomic, temporal and geographical scales.

It is also possible to admire flower models from every angle thanks to a 3D model viewer.

About this study

“Studying flowers in 3D using photogrammetry, by Marion Leménager et al, was published Oct. 20, 2022 in New Phytologist. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada and the Montreal Botanical Garden (Espace pour la vie).

 

 



Journal

New Phytologist

DOI

10.1111/nph.18553

Article Title

Studying flowers in 3D using photogrammetry

Article Publication Date

20-Oct-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Unveiling Toxocara canis Excretory-Secretory Products’ Impact

September 22, 2025
Oxaloacetate Sensing Boosts Innate Flu Defense

Oxaloacetate Sensing Boosts Innate Flu Defense

September 22, 2025

Nasal Staph Affects Mice Mood by Hormone Breakdown

September 22, 2025

Cold Stress Alters Morphology and Genes in Corn Roots

September 22, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

All-D-Peptide Disassembles α-Synuclein Fibrils Directly

Unveiling Toxocara canis Excretory-Secretory Products’ Impact

Deep Insights into Closed Pores in Hard Carbon Anodes for Enhanced High-Energy Sodium-Ion Batteries

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.