• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The sweet spot of flagellar assembly

Bioengineer by Bioengineer
October 27, 2020
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Building the driving machinery of bacteria, the flagella, requires numerous proteins to be assembled. Adding sugar and the presence of a control point are two key steps identified by UNIGE scientists.

IMAGE

Credit: UNIGE/VIOLLIER

To build the machinery that enables bacteria to swim, over 50 proteins have to be assembled according to a logic and well-defined order to form the flagellum, the cellular equivalent of an offshore engine of a boat. To be functional, the flagellum is assembled piece by piece, ending with the helix called flagellar filament, composed of six different subunits called flagellins. Microbiologists from the University of Geneva (UNIGE) have demonstrated that adding sugar to the flagellins is crucial for the flagellum’s assembly and functionality. This glycosylation is carried out by a newly discovered enzyme FlmG, whose role was hitherto unknown. Based on this observation – which you can read all about in the journal eLife – the researchers followed up with a second discovery published in Developmental Cell. Among the six flagellins of Caulobacter crescentus, the model bacterium in the two studies, one is the special one serving a signalling role to trigger the final assembly of the flagellum.

The flagellum is the locomotive engine of bacteria. Thanks to the flagellum, bacteria can swim towards food whether in the lake Geneva (Léman) or inside the host during an infection. The flagellum – which, due to its complexity, is similar to an offshore engine – is made up of a basic structure, a rotary motor and a helical propeller. It is synthesized inside the bacteria in their cytosol. “The 50 proteins must be produced sequentially and assembled in the right order”, begins Patrick Viollier, a researcher in UNIGE’s Department of Microbiology and Molecular Medicine. At the same time the flagellum must be embedded within the bacterial envelope that contains up to three cell layers before ending up on the outside. While the flagellar subunits are known many of the subtleties in flagellar assembly control and targeting mechanisms are still poorly understood.

Sweet suprise

The UNIGE microbiologists studied the bacterium Caulobacter crescentus. &laquoThese bacteria are very interesting for studying flagella since they produce two different daughter cells: one has a flagellum and the other doesn’t. They’re ideal for understanding what is needed for building a flagellum “, explains Nicolas Kint, co-author of the study. Another peculiarity is that the flagellar filament of this bacterium is an assembly consisting of six flagellin sub-units, meaning it isn’t the result of the polymerisation of a single protein, as is the case for many other bacteria. “When analysing these six flagellins, we discovered they were decorated with sugars, indicating that a glycosylation step – an enzymatic reaction adding sugars to proteins – was taking place and was needed for assembly. It was a surprising discovery, since this reaction is not very common and not well understood in bacteria,” continues Professor Viollier.

Viollier’s research team succeeded in demonstrating that the glycosylation of the six flagellins that make up the filament is essential for the formation and functionality of the flagellum. “To demonstrate this, we first identified the gene that produces the glycosylation enzyme, FlmG. When it’s absent, it results in bacteria without flagellum. Secondly, we genetically modified another type of bacterium, Escherichia coli, to express one of the six flagellins, the glycosylation enzyme and sugar producing enzymes from Caulobacter crescentus. All these elements are required to obtain a modified flagellin”, adds Nicolas Kint.

A versatile black sheep

“The different elements of the flagellum are produced one after the other: the molecules of the base first, then those of the rotor and finally the propeller. The scientific literature indicates that this sequential process is important. However, we don’t know how the order of manufacturing the sub-units is controlled .” The researcher and his team focused on the synthesis of the six flagellins, discovering a black sheep among them: a sub-unit that has only 50% sequence homology with the other five. “This sub-unit serves as become a checkpoint protein, a repressive molecular traffic cop restraining the synthesis of the other flagellin proteins,” says Professor Viollier. It is present before the synthesis of the other five sub-units, and it acts as a negative regulator. As long as it is present in the cytosol, the synthesis of the other sub-units is prevented. Once the elements of the flagellum are assembled, apart from the filament, the cop is exported to the membrane and thus removed. Then the synthesis of the last five sub-units can then begin. “It is a sensor for the protein synthesis and a component of the flagellar filament at the same time: a dual function that is unique of its kind,” says the microbiologist with great enthusiasm.

This discovery is fundamental for understanding the motility of bacteria and the assembly of proteins. “It also provides clues for understanding the synthesis and assembly of tubulin, an essential part of the cytoskeleton”, concludes Professor Viollier.

###

Media Contact
Patrick Viollier
[email protected]

Original Source

https://www.unige.ch/communication/communiques/en/2020/la-douce-precision-de-lassemblage-des-flagelles/

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2020.10.005

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Zoo Populations Crucial for Saving the Pacific Pocket Mouse

Zoo Populations Crucial for Saving the Pacific Pocket Mouse

August 22, 2025
Breakthrough Technique Unveils the Hidden Inner Workings of Our Cells in Stunning Detail

Breakthrough Technique Unveils the Hidden Inner Workings of Our Cells in Stunning Detail

August 21, 2025

How Cells Manage Stress: New Study Uncovers the Role of Waste Disposal Systems in Overinflated Balloons

August 21, 2025

Forces Within Tissues Sculpt Developing Organs

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

Natural Disinfectants: Their Role in Prosthodontics and Oral Implantology

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.