• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The structure is decisive

Bioengineer by Bioengineer
March 26, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Blue-green algae are one of the oldest organisms in the world and have an important role to play in many ecosystems on Earth. However, it has always been difficult to identify fossils as blue-green algae without any trace of doubt. The reason is their unremarkable sheath made of calcium carbonate. A Master's student at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now developed a method which can help assign organisms to a particular species.

Most organisms which once lived on Earth have become extinct. Not only individual species, but entire families and broader groups of species have disappeared forever, often leaving only very sparse information about their life and their biology. Researchers often find puzzling fossils they cannot allocate to any known group, especially dating from the period when many groups of organisms first evolved. Such microscopic organisms are often classed as blue-green algae, as on the surface they resemble the microscopic calcium carbonate sheaths of the algae. Blue-green algae are one of the oldest organisms on Earth and play a fundamental role in many marine and terrestrial ecosystems, for example by performing intensive photosynthesis or as food for a number of animals. In spite of their significance, little is known about their evolution, as their fossils are virtually shapeless tubes or bubbles of carbonate. It has therefore proved very difficult for researchers to determine whether fossils belong to blue-green algae or a completely different group of organisms.

Working together with a team of researchers from FAU, Jan-Filip Päßler, a Master's student in Palaeobiology at FAU, has examined the crystallography of fossil structures using methods derived from materials science. Päßler compared carbonate fossils, so-called trilobites, with two microfossils which had not yet been able to be assigned, but which were extremely common in the oceans approximately 400 million years ago. He based his comparison on the observation that biologically formed carbonate structures have a very specific pattern. What is more, organisms form their skeletons in different ways – and these differences become apparent in the way crystals are arranged in the carbonate. Researchers were not only able to measure the direction in which crystals grew, but also misorientations between adjacent crystals. They found that in blue-green algae the crystals follow a less structured pattern with many misorientations. Trilobites, however, have an ordered structure with fewer misorientations. According to Päßler's supervisor, Dr. Emilia Jarochowska, 'our approach can be used in future to clarify the biological relationships between many other mysterious fossils in geological history'.

###

Original article: https://www.frontiersin.org/articles/10.3389/feart.2018.00016/abstract

Further information on the paper can be found at: https://spark.adobe.com/page/1hI02065zyBfr

Media Contact

FAU Press Office
[email protected]
49-913-185-70229
@FAU_Germany

http://www.uni-erlangen.de

http://dx.doi.org/10.3389/feart.2018.00016

Share13Tweet7Share2ShareShareShare1

Related Posts

Identifying Key Genes for Vancomycin-Resistant Enterococcus

Identifying Key Genes for Vancomycin-Resistant Enterococcus

September 27, 2025
blank

Reducing Harmful Compounds in Air-Fried Meat

September 27, 2025

BoRR Gene Family: Key to Cauliflower Growth and Salt Resilience

September 27, 2025

Revolutionizing Metagenomics with Oxford Nanopore Sequencing

September 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    81 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Identifying Key Genes for Vancomycin-Resistant Enterococcus

Manifold Design Enhances Coolant Flow in Fuel Cells

Staff Version of Person-Centred Climate Questionnaire Evaluated

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.