• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The sleeping Sigma-Factor

Bioengineer by Bioengineer
February 3, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A previously unknown mechanism enables bacterial antibiotic resistance

IMAGE

Credit: Max Planck Institute for terrestrial Microbiology/Iyer


Researchers from the Max Planck Institute for Terrestrial Microbiology in Marburg have described a previously unrecognized mechanism of bacterial transcriptional regulation that is obviously widespread in bacteria. In the future, their findings could also help fight antibiotic resistance.

Within their environment, bacteria often encounter various kinds of changes. In order to survive under stress or changing conditions, bacteria have to respond fast and adequate to achieve a physiological adaptive response. This mostly happens by specifically adapting gene expression. Thus, transcriptional regulation is one of the biggest means by which bacteria adapt to external stress conditions.

Initiation of transcription in bacteria only occurs upon the binding of a key component known as the sigma factor (σ factor) to the RNA polymerase (RNAP) core enzyme in order to form the complete and catalytically active holoenzyme. This holoenzyme then recognizes key promotor elements and subsequently enables transcription. During external stress conditions, the primary σ factor is replaced by an alternative σ factor, which differs from the former with respect to the promoter sequences that it recognizes. Thus, holoenzyme formation with this alternative σ factor results in the transcription of corresponding stress-response genes. Among the various classes of alternative σ factors, the most abundant ones are the extracytoplasmic function (ECF) σ factors. Sigma factors are commonly known to be intrinsically active, which means that the bacterial cell has to keep them in an inactive state until their action is warranted.

Novel mechanism of transcriptional regulation

There are several mechanisms for regulating σ factor activity. Usually, alternative σ factors stay retained in an inactive state by sequestration into a complex with an anti-σ factor. Upon a specific stimulus, the inhibitory effect of the anti-σ factor is alleviated and the σ factor is released for interaction with the RNA polymerase.

However, in collaboration with researchers from SYNMIKRO in Marburg, the Max Planck researchers have revealed a previously unknown mechanism of transcriptional regulation, which instead relies on intrinsically inactive σ factors that are unable to bind the RNAP core enzyme. Only upon phosphorylation on a specific residue is the σ factor activated and able to bind the RNAP in formation of the holoenzyme and consequently drive expression of specific genes. An extensive bioinformatics analysis indicated that this transcriptional regulation by σ-phosphorylation is a general mechanism in bacteria, presenting a new paradigm in transcriptional regulation.

“A special property of this mechanism is its modularity”, Research Group Leader Simon Ringgaard explains. “Our discoveries reveal how nature has merged two distinct regulation mechanisms – threonine kinase signaling and regulation of σ factor activity – as joint forces, in order to achieve the ability of environmental adaptation.”

The novel sensing and signaling pathway also regulates antibiotic resistance

Ringgaard’s model organism itself represents a field of application: Vibrio parahaemolyticus is a severe human pathogen and the leading agent of seafood borne gastroenteritis in the world. The Max Planck researchers identified an ECF σ factor / threonine-kinase pair (named EcfP / PknT) that is responsible for sensing polymyxin antibiotics stress and mediating bacterial resistance towards polymyxin in V. parahaemolyticus. The PknT kinase is activated when cells are treated with polymyxin antibiotics. Activated PknT in turn activates EcfP, which results in expression of genes required for polymyxin antibiotic resistance.

Polymyxins constitute a class of antibiotics that count as a last resort to treat Gram-negative infections. Because antibiotic resistance is a severe public health concern worldwide, it is very important to understand how cells sense and respond to antibiotic treatment. The identification of mechanisms that regulates polymyxin antibiotic resistance in V. parahaemolyticus opens up new avenues of research in fighting this and probably other important human pathogens. Ultimately, the work of the Marburg researchers provides fundamental insights in the regulation of gene expression and cellular adaptation in the entire bacterial kingdom.

###

Original Publication

Iyer, S.C.; Casas-Pastor, D.; Kraus, D.; Mann, P.; Schirner, K.; Glatter, T.; Fritz, G.; Ringgaard, S.

Transcriptional regulation by σ factor phosphorylation in bacteria.

Nature Microbiology (2020), Published: 27 January 2020

Media Contact
Dr. Simon Ringgaard
[email protected]
49-642-117-8301

Original Source

https://www.mpg.de/14404619/0131-terr-138345-the-sleeping-sigma-factor

Related Journal Article

http://dx.doi.org/10.1038/s41564-019-0648-6

Tags: BiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

miCDER: Advanced Model Uncovers miRNA-Disease Relations

November 28, 2025
blank

Boosting Sudan Desert Bucks: Fish Oil and Vitamin E

November 27, 2025

Chloroplast Genome Insights from Aegilops in Wheat

November 27, 2025

SP1/NEDD4L Axis Inhibits Breast Cancer via SNAI2

November 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Laminin-α2 Loss Triggers Muscle Stem Cell Failure

Advancing MgO Bioceramics: Hydroxyapatite-SiO₂ Dual Oxidation

New Insights: Low Lateralization in Cushing’s Diagnosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.