• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The skin of the earth is home to pac-man-like protists

Bioengineer by Bioengineer
January 24, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: STRI

Pac-Man, the open-mouthed face of the most successful arcade game ever, is much more well-known than any of the one-celled organisms called protists, at least among people over 30. But the first study to characterize protists in soils from around the world–co-authored by Smithsonian scientists–found that the most common groups of soil protists behave exactly like Pac-Man: moving through the soil matrix, gobbling up bacteria. Their results are published in Science Advances.

“As part of a bigger project to understand all of the microbes in soil we are characterizing bacteria and fungi, but also a lesser-known, but equally important group called protists,” said Angela Oliverio, former STRI intern and lead author on the paper with professor Noah Fierer and post-doctoral fellow Manuel Delgado-Baquerizo at the University of Colorado, Boulder; staff scientist Ben Turner at the Smithsonian Tropical Research Institute in Panama; researcher Stefan Geisen at the Netherlands Institute of Ecology and professor Fernando Maestre at the Universidad Rey Juan Carlos and the Universidad de Alicante, Spain.

Protists reproduce quickly and are probably much more responsive to climate change than larger forms of life. Like the cartoon character Sheldon Plankton in Spongebob Squarepants, protists are not plants, animals or fungi. They are single-celled organisms but, unlike bacteria, they have a nucleus. They move through water using whip-like flagellae and tiny hairs called cilia. Some of the nastier protists cause sleeping sickness, malaria and red tide, but nearly all play important, if mysterious, roles in the energy- and nutrient-trading relationships that connect ecosystems.

Identifying millions of miniscule protists in soil used to be impossible, but recently-developed technology to classify protists based on their genetic code makes it possible to characterize them on a large scale. The team sequenced the 18S ribosomal RNA studied from soil samples from across six continents to better understand the ecological roles of the protists in the below-ground ecosystem.

They discovered that most of the protists are the Pac-Man type that consume other, smaller organisms. But in tropical soils, a larger number of protists were parasites, living inside other organisms. In desert soils, there were more protists capable of photosynthesizing and using sunlight directly as an energy source. The best predictor of what types of protists exist in a sample is the annual precipitation at the site. This may seem intuitive because protists depend on water to move, but it was a surprise, since soil acidity, rather than precipitation, is what usually predicts which bacteria and fungi are in soil.

“Soils are home to an astonishing diversity of organisms, the lives of which we are only beginning to understand,” said Ben Turner, STRI staff scientist and co-author of the study. “Soil protists are an understudied group, so this work provides a foundation for future research on their ecology in ecosystems worldwide.”

###

Funding from this study was provided by the Simons Foundation, STRI, a U.S. National Science Foundation Graduate Research Fellowship, a Graduate Fellowship from the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder, the Netherlands Organisation for Scientific Research, the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Programme and the European Research Council.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is part of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://stri.si.edu. Promo video: https://www.youtube.com/watch?v=M9JDSIwBegk

Media Contact
Elisabeth B King
[email protected]
202-633-4700 x28216

Original Source

https://www.si.edu/newsdesk/releases/skin-earth-home-pac-man-protists

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aax8787

Tags: AgricultureBiodiversityBiologyEcology/EnvironmentGeneticsGeology/SoilMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

miCDER: Advanced Model Uncovers miRNA-Disease Relations

November 28, 2025
blank

Boosting Sudan Desert Bucks: Fish Oil and Vitamin E

November 27, 2025

Chloroplast Genome Insights from Aegilops in Wheat

November 27, 2025

SP1/NEDD4L Axis Inhibits Breast Cancer via SNAI2

November 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Laminin-α2 Loss Triggers Muscle Stem Cell Failure

Advancing MgO Bioceramics: Hydroxyapatite-SiOâ‚‚ Dual Oxidation

New Insights: Low Lateralization in Cushing’s Diagnosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.