• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The research of Samara scientists will help to explain how building material for planets appears in the universe

Bioengineer by Bioengineer
April 9, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The team of scientists proposed a sequence of transformations starting from a chemical compound — a triphenylene molecule — to graphene nanoparticles, soot, and carbon dust, which are building materials for a considerable part of meteorites

IMAGE

Credit: Samara University

The international team of scientists proposed a sequence of transformations starting from a chemical compound — a triphenylene molecule — to graphene nanoparticles, soot, and carbon dust, which are building materials for a considerable part of meteorites.

The team of scientists of Samara National Research University, Florida International University, the University of Hawaii and Lawrence National Laboratory (Berkeley) proposed and during the experiment confirmed the formation mechanisms of the primary building block for a part of meteorites and planets – triphenylene molecules. The results of the study are published in the article “Gas-Phase Synthesis of Triphenylene (C18H12)” and placed on the cover of the high ranking journal ChemPhysChem.

Triphenylene is a key element around which larger graphene-like structures are formed, which then gradually “stick together” into layered nanoparticles. The latter, colliding with each other, are combined into particles of soot and carbon dust. Due to gravity, dust is collected in the simplest meteorites – carbonaceous chondrites, and then in other, larger celestial bodies, including planets.

The formation mechanism of triphenylene was confirmed by quantum-mechanical calculations carried out by a team of Samara University scientists from the research laboratory “Physics and Chemistry of Combustion”, supported by the megagrant of the Russian government “Developments of Physically Grounded Combustion Models” (grant No. 14.Y26.31.0020). The aim of the research is to study the formation mechanisms of harmful substances in combustion chambers, which include polyaromatic hydrocarbons (PAHs), nanoparticles and soot.

“In fact, we have found one of the starting mechanisms for reactions that trigger the formation of nanoparticles, soot and carbon dust both in the combustion chambers of engines and in the molecular clouds of the galaxies,” – said Head of Samara University Physics and Chemistry of Combustion Laboratory, Professor of Florida International University Alexander Mebel.

The calculations showed that the process of triphenylene formation can proceed not only in flames at high temperatures, but also in conditions of extra-low temperatures in interstellar space, triggering the growth mechanism of flat polycyclic aromatic hydrocarbons (PAHs) up to nanoscale particles.

In addition, as it is shown by the analysis carbonaceous chondrides having flown to the Earth from space, their composition contains the entire spectrum of particles, ranging from simple PAHs to graphene nanoparticles.

“Our work aroused wide interest of the scientific community not only because we found the mechanism of formation of the triphenylene molecule, but we also determined all the kinetic constants of the processes involved in this reaction”, – added Alexander Mebel. For this reason, the data obtained during the study, according to the Professor of Florida International University, will be in demand both by design engineers for creating environmentally friendly combustion chambers of aircraft and automobile engines operating on hydrocarbon fuels, and by scientists who are studying the formation of various galactic macrostructures from molecular clouds.

###

For reference:

Triphenylene (C18H12) is a polycyclic aromatic hydrocarbon consisting of four benzene rings. Within the study, an international team of scientists showed how a more complex compound of molecules- triphenylene is born in the reaction of the phenanthrenyl radical with vinyl acetylene.

ChemPhysChem is one of the leading interdisciplinary journals in Physical Chemistry and Chemical Physics. According to the Scimago Journal Rank, the journal has the highest quartile Q1 in all scientific areas defined in the database: Chemistry, Physics and Astronomy. According to the Journal Citation Reports, in 2017, the impact factor of the journal was 2.947.

Samara National Research University is a Russian educational and research centre in the field of aerospace technology. It is one of the leading Russian universities, the corresponding status of which is enshrined in the regulatory documents of the Russian Federation Government and recognized by the academic community. Samara University is one of 29 national research universities in Russia. Since 2013, the university has been participating in the programme which is to improve the competitiveness of Russian universities among the world’s leading research and education centers (Project 5-100). Scientific and education activity of Samara University encompasses aerospace technology, engine-building, modern methods of information processing, photonics, materials science, as well as the fundamental technical and natural sciences. In addition to engineering, the university implements educational and research programmes in other areas, including law, economics, management, linguistics, historical and social sciences.

Media Contact
Olga Bukhner
[email protected]

Original Source

https://ssau.ru/english/news/16562

Related Journal Article

http://dx.doi.org/10.1002/CPHC.201900200

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesParticle PhysicsPlanets/Moons
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    194 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vitamin D Links to Brain Volume in Autistic Kids

Nurses’ Insights on Hajj Mass Gathering Preparedness

Exploring Submergence Tolerance in Rice Seedlings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.