• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The recipe for especially efficient stomata

Bioengineer by Bioengineer
March 16, 2017
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: Michael Raissig and Dominique Bergmann

Scientists have identified a key element underlying the superior function of stomata – or tiny, gas-exchanging pores – in grasses, where stomata function more efficiently than they do in other plant types. The results reveal a mechanism that may have contributed to the successful diversification of the grass family millions of years ago. During photosynthesis, plants maximize the amount of carbon they intake from carbon dioxide, while minimizing the amount of water they lose, by adjusting their stomata. Grasses – the plant lineage that provides the majority of human food, fiber and biofuel – have evolved a unique stomata structure that allows them to do this function particularly well. Here, studying Brachypodium distachyon, a grass species related to major cereal grains like wheat, Michael Raissig et al. used a genetic screen to identify elements responsible for the unique morphology of grass stomata. They uncovered a transcription factor, or protein, known as MUTE. The version of MUTE found in Brachypodium was bigger than the related protein in the flowering plant Arabidopsis; it was also mobile, traveling to cells adjacent to where it was synthesized. Brachypodium engineered to lack the mobilized MUTE did not exhibit the characteristic stomata, and grew poorly, the researchers report. These findings may be harnessed by plant breeders and agricultural biotechnologists to enhance both photosynthetic capacity and water use efficiency in major grass and even other crops.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Photodynamic Therapy Enhances Oxaliplatin Against Cervical Cancer

October 13, 2025
Biocompatible Elastomeric Transistor for Implantable Devices

Biocompatible Elastomeric Transistor for Implantable Devices

October 13, 2025

IGF2BP3 Drives Stemness in Salivary Carcinoma

October 13, 2025

Enhancing Patient Outcomes: Clinical Pharmacy in Sudan

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Photodynamic Therapy Enhances Oxaliplatin Against Cervical Cancer

Biocompatible Elastomeric Transistor for Implantable Devices

IGF2BP3 Drives Stemness in Salivary Carcinoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.