• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The protein that gives identical cells individuality

Bioengineer by Bioengineer
July 16, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New insight into a protein’s role in regulating tight DNA packing could have implications for combating tumor cell resistance to anti-cancer treatments.

Hokkaido University researchers have revealed how a protein maintains a delicate balance of tightly packing DNA inside yeast cells with the same genetic material, while also allowing for variation amongst them. The findings, published in the journal PLOS Genetics, could help researchers identify ways to suppress the formation of tumor cells that are resistant to anti-cancer drugs.

The incredibly long strands of DNA found in cells are packed into a structure called chromatin with the help of proteins called histones. Heterochromatin is where parts of chromatin are really tightly packed together. This makes certain genes difficult to access, effectively silencing them. Abnormal heterochromatin formation can inhibit genes that are essential for basic cell functions. But it can also play a role in cellular adaptation to changing circumstances by modifying gene accessibility. The mechanisms that regulate heterochromatin distribution are not yet fully understood.

A protein, called Epe1, is known for its suppressive role in the formation of heterochromatin. Biological chemist Yota Murakami of Hokkaido University led a team of scientists in Japan to find out what was happening at the molecular level.

When a fission yeast cell divides into two, each cell has identical genetic material. Murakami’s team found that turning off Epe1 in yeast cells led to stochastic heterochromatin formation, altering the characteristics of some cells and leading to the production of a more diverse yeast population.

At the molecular level, Epe1 works against a molecular label on histone called H3K9me which recruits gene-silencing proteins for heterochromatin formation. The team found that Epe1 prevents H3K9me deposition at sites where abnormal “ectopic” heterochromatin has the potential to form. It also promotes the removal of H3K9me on already-formed ectopic heterochromatin, destabilizing the tight structure. “Interestingly, our study showed that the removal of ectopic heterochromatin by Epe1 is incomplete. Thus, it creates diversity in gene expression and cell characteristics in a population with the same genetic material,” says Yota Murakami. “In other words, while Epe1 prevents the emergence of extreme diversity caused by accidental heterochromatin formation, it also allows individuality.”

Cell diversity is thought to help adaptation to ever-changing environments, but, it is not always a good thing. Dividing tumor cells can also acquire diversity and develop resistance to anti-cancer treatments. “Since the chromatin regulatory mechanisms found in fission yeast cells are similar to those in humans and other mammals, this work could improve understandings of how cells in our body adapt to changing environments and develop resistance to anti-cancer treatments,” explains Yota Murakami.

###

Media Contact
Naoki Namba
[email protected]

Related Journal Article

https://www.global.hokudai.ac.jp/blog/the-protein-that-gives-identical-cells-individuality
http://dx.doi.org/10.1371/journal.pgen.1008129

Tags: BiodiversityBiologyCell BiologyGeneticsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025
New Insights on Breast Cancer Metastasis Biomarkers

New Insights on Breast Cancer Metastasis Biomarkers

August 29, 2025

Metabolomics Reveals Meat Quality in Dolang Sheep

August 29, 2025

Unlocking Diagnostic Markers for Myocardial Infarction

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers at Pusan National University Unveil Self-Deploying Materials for Next-Generation Robotics

SEoulTech Researchers Pioneer 3D-Printed Smart Materials for Advanced Wearable Pressure Sensors

IL2RG Knockout Alters Pyroptosis to Apoptosis in PCOS

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.