• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The protein protectors of fertility

Bioengineer by Bioengineer
August 9, 2023
in Health
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – You’re likely familiar with RNA, the molecule that plays an important role in protein production and gene expression control. Perhaps you’re less familiar, however, with PIWI-interacting RNA (piRNA), a special type of RNA that protects the genome from mutations. Now, researchers in Japan have shed light on how these critical molecules are formed by the dynamics of several associated proteins in the germline of the fruit fly, Drosophila melanogaster.

Fig. 1

Credit: 2023, Toshie Kai, Tejas functions as a core component in nuage and precursor processing in Drosophila piRNA biogenesis, Journal of Cell Biology

Osaka, Japan – You’re likely familiar with RNA, the molecule that plays an important role in protein production and gene expression control. Perhaps you’re less familiar, however, with PIWI-interacting RNA (piRNA), a special type of RNA that protects the genome from mutations. Now, researchers in Japan have shed light on how these critical molecules are formed by the dynamics of several associated proteins in the germline of the fruit fly, Drosophila melanogaster.

In a new study published in the Journal of Cell Biology, researchers from Osaka University have clarified how the proteins Tejas (Tej), Vasa (Vas), and Spindle-E (Spn-E) contribute to the creation of piRNAs, which are found in the gonads and help protect the genome from mutations or deletions caused by transposons that may be passed on through reproductive cells.

In Drosophila, piRNAs first appear as long sequences, known as precursor transcripts, which are processed in membrane-less cellular compartments called ‘nuage’ and turned into their shorter forms as functional piRNAs. These nuage are composed by the interactions of RNA-processing proteins, PIWI family proteins, and a group of proteins known as the Tudor-domain-containing (Tdrd) proteins. Of those, Tej, a Tdrd protein, has been previously shown to play a key role in the piRNA pathway, with a major reduction in piRNAs observed in the absence of Tej. However, the role that Tej plays in the generation of piRNA is not fully understood. The research team set out to investigate the molecular function of Tej during piRNA biogenesis.

“We first evaluated the detailed function of Tej in the Drosophila ovary and confirmed that Tej is involved in processing precursor transcripts with two RNA-processing helicases: Vas and Spn-E in the nuage,” explains lead author of the study Lin Yuxuan. “In the mutant germ cells that lack Tej, we observed that Vas and Spn-E are not properly assembled in the nuage, indicating that Tej plays a critical role in recruiting Vas and Spn-E to the nuage.”

By generating variants of Tej that lack specific regions of the protein, the investigators could identify which areas of Tej are crucial for interacting with Spn-E and modulating the mobility of Vas. They found that one distinct region, termed the ‘Spn-E recruit site’, contributes to the recruitment and maintenance of Spn-E in the nuage. Another distinct region, known as the intrinsically disordered region, affects both the ability of Vas to move within the nuage and the dynamics of other components of the nuage.

“Our study demonstrates that Tej is a key component of nuage formation and piRNA processing,” says senior author Kai Toshie. “By recruiting Vas and Spn-E, Tej facilitates nuage formation, allowing the processing of piRNA precursor transcripts into their mature, functional forms.”

Disruption of piRNA formation is known to cause infertility. The research team’s insight into the formation of nuage and piRNA processing mediated by Tej in Drosophila germline may help to uncover the mechanisms underlying reproductive disorders, including infertility, and may contribute to the development of new fertility drugs.

###

The article, “Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis,” will be published in Journal of Cell Biology at DOI: https://doi.org/10.1083/jcb.202303125

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan’s leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan’s most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/e



Journal

Journal of Cell Biology

DOI

10.1083/jcb.202303125

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

Tejas functions as a core component in nuage and precursor processing in Drosophila piRNA biogenesis

Article Publication Date

9-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.