• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The novel function of self-renewal factor of spermatogonial stem cells is identified

Bioengineer by Bioengineer
June 29, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Seiji Takashima Ph.D., the Faculty of Textile Science and Technology in Shinshu University

A research team found a novel function of fibroblast growth factor 2 (FGF2), a self-renewal factor for spermatogonial stem cell (SSC) which is the origin of the sperm production. Although it has demonstrated that both FGF2 and glial cell line-derived neurotrophic factor (GDNF) is indispensable for SSC self-renewal and survival in vitro, the present study revealed that FGF2 showed the different properties from GDNF in mouse testis. This finding will contribute to the regulation of SSCs in vivo for the treatment of male infertility.

This study was published in the June issued Stem Cell Reports.

Dr. Seiji Takashima, an Assistant Professor of the Faculty of Textile Science and Technology in Shinshu University and the corresponding author on the paper, successfully identified a novel function of FGF2 in mouse testis using a "biodegradable gelatin microsphere system" which is capable of sustained diffusion of self-renewal factors for several days in vivo.

Consecutive production of sperm is ensured by the repeat of self-renewal and differentiation of SSCs. It was well known that the self-renewal of SSCs is promoted by GDNF, while retinoic acid (RA) induces the differentiation toward sperm production. In 2015, Dr. Takashima found that FGF2 (fibroblast growth factor 2) also act as a self-renewal factor for SSCs in vitro. In the present study, his group demonstrated that FGF2 conversely acts as a differentiation promoting factor in vivo.

They found that FGF2-stimulated SSCs frequently expressed a receptor for RA when compared to those stimulated by GDNF, suggesting that FGF2 expands differentiation-susceptible subset of SSCs. Simultaneously, they also demonstrated that this molecule acts on testicular microenvironment, which is required for SSC function, to facilitate RA action. These results demonstrate that FGF2, which was shown to be 'bona fide self-renewal factor for SSCs in vitro' in 2015, can conversely act to facilitate SSC differentiation in vivo. Considering that GDNF/FGF2 ratio shows dynamic change during testicular development and regeneration, the functional balance between GDNF and FGF2 might play a pivotal role in the regulation of sperm production from SSCs.

The finding will contribute not only to understanding the principle of sperm production but also to future applications for male infertility treatment, breeding live stock, and conservation of endangered species.

###

About Shinshu University

Shinshu University is a national university in Japan founded in 1949 and working on providing solutions for building a sustainable society through interdisciplinary research fields: material science (carbon, fiber, composites), biomedical science (for intractable diseases, preventive medicine), and mountain science. We aim to boost research and innovation capability through collaborative projects with distinguished researchers from the world. For more information, please see: http://www.shinshu-u.ac.jp/english/

Media Contact

Nobuko Imanishi
[email protected]
81-263-372-097

http://www.shinshu-u.ac.jp/

Related Journal Article

http://dx.doi.org/10.1016/j.stemcr.2018.03.016

Share12Tweet7Share2ShareShareShare1

Related Posts

New Research Reveals Early “Inherence” Bias in the History of Science

New Research Reveals Early “Inherence” Bias in the History of Science

September 15, 2025
NIH Awards $8.6 Million Grant to Renew Rare Disease Clinical Research Network for Neurodevelopmental Studies

NIH Awards $8.6 Million Grant to Renew Rare Disease Clinical Research Network for Neurodevelopmental Studies

September 15, 2025

Can Microbes Be Heroes? New Study Uncovers Hollywood’s Overlooked Microbial Story

September 15, 2025

Rethinking Genetics: Why Classic Dominant-Recessive Gene Models Might Be Oversimplified

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Research Indicates Majority of Americans Could Improve Health by Abolishing Daylight Saving Time

When Wireless Data Sources Deplete: Implications for Connectivity

New Funding Advances Development of First Potentially Regenerative Treatment for Multiple Sclerosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.