• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The microenvironment of diabetic retinopathy supports lymphatic neovascularization

Bioengineer by Bioengineer
March 29, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Proliferative diabetic retinopathy is a major sight-threatening diabetic complication. Nearly all patients with type I diabetes and over 60% of patients with type II diabetes develop retinopathy after 20 years of diabetes, despite metabolic control.

Proliferative diabetic retinopathy comes into existence through the process of pathological angiogenesis, when endothelial cells of the retinal vasculature invade their surroundings and project into the vitreous, the gel substance present inside the eye. The new vessels are fragile and leaky, which leads to vitreous haemorrhage and a fibrotic response that will eventually pull the retina causing retinal detachment and subsequent vision loss. When these vessels develop, diabetic patients are directed to vitreoretinal surgery whereby the newly formed pathological fibrovascular tissue is excised.

– Given the fact that current diabetic mouse models do not fully recapitulate this human diabetic eye complication, our research group set out to utilize these excised neo(fibro)vascular tissues for the in-depth characterization of the disease pathophysiology, tells researcher Erika Gucciardo from the University of Helsinki.

One major question the group had was to understand the nature of these vessels.

– Chronic tissue inflammation is present in proliferative diabetic retinopathy and we know it is connected with lymphangiogenesis. Therefore we asked whether proliferative diabetic retinopathy involves the growth or differentiation of new lymphatic vessels, Gucciardo explains.

The researchers found, indeed, expression of lymphatic markers in the PDR tissues.

– It is increasingly clear that studying the microenvironment is of fundamental importance to understand the mechanisms of a disease. The close collaboration between clinics and research laboratory opened such avenue, says Research Director Kaisa Lehti, Karolinska Institutet and University of Helsinki.

Vitreous samples were collected peri-operatively and used to understand the contribution of the diabetic intraocular microenvironment to the lymphatic endothelial involvement. The researchers found that indeed vitreous samples with increasing concentration of major lymphangiogenic growth factor VEGFC supported the lymphatic endothelial identity and corresponded to fibrovascular tissues with lymphatic marker expression.

The functionality of these vessels in PDR pathogenesis remains to be investigated. – It will be interesting to know whether these lymphatic vessels develop coincidentally with abnormal blood vessels or only later upon PDR progression and whether they are detrimental or beneficial, e.g towards fluid removal and inflammatory cells trafficking, Gucciardo says.

All together these discoveries bring a new concept to diabetic microvascular complications and can lead to novel treatment approaches.

– In the future, therapeutic strategies targeting both lymphangiogenesis and angiogenesis may represent promising approaches for treating ischemia and inflammation-associated posterior segment retinal diseases, states ophthalmic surgeon, Dr. Sirpa Loukovaara from Helsinki University Hospital.

###

Media Contact

Dr. Erika Gucciardo
[email protected]
358-504-486-325
@helsinkiuni

http://www.helsinki.fi/university/

https://www.helsinki.fi/en/news/health/the-microenvironment-of-diabetic-retinopathy-supports-lymphatic-neovascularization

Related Journal Article

http://dx.doi.org/10.1002/path.5070

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Aluminum’s Role in Campo Rupestre Melastomataceae

Exploring Aluminum’s Role in Campo Rupestre Melastomataceae

November 18, 2025
ML Unlocks Key SNPs for Population Assignment

ML Unlocks Key SNPs for Population Assignment

November 18, 2025

Mapping Splicing Events in Cows’ β-Casein Genotypes

November 17, 2025

Microchimerism: Challenging Conventional Views on Sex and Gender

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis: A Key Player in Sepsis Progression

Exploring ICU Nurses’ Innovation Drivers via Random Forest

Glucagon-Like Peptide-1 Agonist Withdrawal Impacts Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.