• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The making of a Mona Lisa hologram

Bioengineer by Bioengineer
May 30, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, May 30, 2023 – Holograms are often displayed in science fiction as colorful, life-sized projections. But what seems like the technology of the future is actually the technology of the present, and now it has been used to recreate the Mona Lisa.

Holographic reconstruction of the Mona Lisa by a megapixel acoustic metasurface

Credit: Miao et al.

WASHINGTON, May 30, 2023 – Holograms are often displayed in science fiction as colorful, life-sized projections. But what seems like the technology of the future is actually the technology of the present, and now it has been used to recreate the Mona Lisa.

In Applied Physics Reviews, by AIP Publishing, researchers from Tianjin University, the Beijing Institute of Technology, Rowan University, the University of Missouri, Qingdao University, Shijiazhuang Tiedao University, and Beijing Jiaotong University developed an acoustic metasurface-based holography technique that uses a deep learning algorithm to generate and iteratively improve a hologram of the Mona Lisa.

Holograms are images created by recording and reconstructing the interference pattern of light or sound waves. They provide realistic and immersive visual or auditory experiences and can be applied in entertainment, medical imaging, and communication, among other fields.

Metasurfaces, or two-dimensional materials made of an array of tiny antenna-like components, can help a lot with the holography process.

“A metasurface-based hologram works by precisely controlling the phase and amplitude of the waves interacting with the metasurface,” said author Yue-Sheng Wang. “As a result, the outgoing waves at each pixel exhibit a certain amplitude and phase, which results in the desired holographic image based on their interference.”

The team wanted to develop a metasurface holography optimization method to enhance efficiency and precision. They used a deep neural network-based algorithm to customize the antenna-like structures within their metasurface. By iteratively reducing inconsistencies between the original and holographic image, they tweaked the metasurface and created a high-quality hologram.

“We chose to recreate the Mona Lisa as a proof of concept,” said Wang. “It is so famous that almost everyone knows about it. It is filled with countless delicate and subtle transitions of layers, which enhances the softness, haziness, and mystery of the painting. So it is a great way to demonstrate the effectiveness of our method.”

The holographic method successfully reconstructed the Mona Lisa, and, in even more detail, her left eye. While the Mona Lisa hologram is two-dimensional, the technique can be extended to create three-dimensional images as well.

“The precise control of sound waves offered by our holography method is crucial for advancing non-invasive medical therapies, effective noise control, and optimizing acoustic environments like concert halls,” said Wang. “These improvements have the potential to enhance quality of life and various technological applications.”

The authors believe their technique could revolutionize the field of holography. They plan to explore ways to generalize it, make it compatible with 3D printing, and reduce training time.

###

The article, “Deep-Learning-Aided Metasurface Design for Megapixel Acoustic Hologram,” is authored by Xuan-Bo Miao, Hao-Wen Dong, Sheng-Dong Zhao, Shi-Wang Fan, Guoliang Huang, Chen Shen, and Yue-Sheng Wang. It will appear in Applied Physics Reviews on May 30, 2023 (DOI: 10.1063/5.0136802). After that date, it can be accessed at https://doi.org/10.1063/5.0136802.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.



Journal

Applied Physics Reviews

DOI

10.1063/5.0136802

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Deep-Learning-Aided Metasurface Design for Megapixel Acoustic Hologram

Article Publication Date

30-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis Links to Acute Kidney Disease Genes

Transforming Biomedical Engineering Education in the Philippines

TLR4 Polymorphisms Increase Risk in CMV-Positive Pregnancies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.