• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The last frontier

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Santa Barbara neuroscientist Kenneth S. Kosik has been studying the brain for decades. His UC Santa Barbara neurobiology lab focuses on the evolution of synapses that connect neurons and the genetics of Alzheimer's disease. In particular, Kosik's team is interested in the underlying molecular basis of plasticity and how protein translation at synapses affect learning.

In a new paper published in the journal Neuron, Kosik explores the nature of brain plasticity and proposes a theory about how neurons learn.

"It's fairly well established scientifically that the learning units in the brain are the synapses," said Kosik, UCSB's Harriman Professor of Neuroscience and co-director of the campus's Neuroscience Research Institute. "Many neuroscientists think that synaptic learning requires new proteins made locally right at the synapse, which acts as its own control center."

A neuron are large cell that contains a cell body and dendrites, branched extensions along which impulses received from other cells at the synapses are transmitted to the cell body. In theory, learning takes place at synaptic junctions. But the sheer number of synapses — multiple thousands — makes it unlikely that all of them can make the RNA responsible for creating new proteins.

So Kosik did the math. Using available techniques, he computed the actual copy numbers of RNA in cells, which are derived from two copies of DNA in a chromosome.

"Dendrites don't actually have many RNAs, but they obviously have enough because they get the job done," Kosik explained. "What is a surprise is that they do it with a relative paucity of RNAs. That is, there are many synapses beyond the reach of any RNA and therefore those synapses are not accessible to plasticity. If you have a large portion of the brain that can't engage in learning, then what's going on here?"

Kosik noted that having a relatively small number of RNAs allows synapses to leverage increased dynamic range. The best analogy is an audio system that functions with sound fidelity at low and high volumes. Dendrites need to function with fidelity when their inputs are few or many. Having a small number of RNAs provides a quantitative space to enlarge the pool dynamically when traffic into the dendrite is high.

"The dynamic range allows dendrites to double or triple or even quadruple their learning capacity in accordance with the amount of information coming in," Kosik explained. "It also allows for sparse coding."

Another concept in neurobiology, sparse coding plays a role in how neurons process incoming information by using the representation of our memories and perceptions through the strong activation of a relatively small set of neurons. For each stimulus, this is a different activated subset utilized from the large pool of all available neurons.

Kosik explained the concept in terms of discerning odors. Too many odors exist for each one to have a unique pattern of firing neurons. Rather, the brain creates small maps. One odor might have 10 neurons that encode it, seven of which also encode a different odor, creating an overlap.

"In the same way, this idea of the dendrites having a relatively few number of RNAs allows them to receive a fewer number of inputs," Kosik said. "There are lot of inputs coming through the dendritic tree, but only a few of them are capable of learning. We call the type of learning that goes on in neurons plasticity. So the dendrite only learns from impulses where protein synthesis is available — an example of sparse coding.

"The RNAs near synapses inform us as to those synapses which have undergone plasticity, but like learning itself, the RNAs are not static," Kosik added. "The RNAs like where they are. They do a good job where they are, but they eventually degrade and have to be remade, and in so doing, they may not necessarily return to their original location. Those small changes may impair our access to a memory, but now another nearby synapse is open to novelty and has an opportunity to learn a new thing."

###

Media Contact

Julie Cohen
[email protected]
805-893-7220
@ucsantabarbara

http://www.ucsb.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Gal-9 on Leukemia Stem Cells Predicts Prognosis

September 12, 2025
blank

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gal-9 on Leukemia Stem Cells Predicts Prognosis

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

Nanomedicine: A New Frontier in Targeting Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.