• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The key to drought-tolerant crops may be in the leaves

Bioengineer by Bioengineer
August 15, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Xiuwei Liu, Texas A&M University

A solution to help farmers to grow crops in dry areas or during stretches of drought may depend on breeding and cultivating plants that protect themselves with a thicker layer of leaf wax, a new study shows.

Sarah Feakins, a scientist at USC who has studied leaf wax in the context of climate change, teamed up recently with researchers at Texas A&M University to research and develop drought-resistant crops. During tests with growing winter wheat, a type harvested for yeast-based breads and other such products, the team found that the cultivars in a high and dry area of Texas generated more protective wax on their leaves as a measure to protect themselves against more extreme conditions.

The results mimicked what scientists have found in leaves in natural ecosystems: Those that survive in dry climates have higher concentrations of wax.

"Water conservation depends on innovation, and in this case, we are hoping to find one solution by identifying the traits in this important food crop that would enable the wheat plants to tolerate drought and still produce plenty for harvest," said Feakins, a co-lead author of the study and an associate professor of earth sciences at the USC Dornsife College of Letters, Arts and Sciences.

The study was published in the journal Organic Geochemistry on Aug. 14.

Dry vs. regular moist conditions

All plants produce wax that helps their leaves repel water and shield the plant from insects and the elements, said Feakins, who has studied climate history of the Earth through the geochemistry of leaf wax in sediments.

Feakins said this latest study marks the first time she has applied her expertise to agricultural production. The United States is currently the top exporter of wheat in the world, according to the U.S. Department of Agriculture's Economic Research Service. Winter wheat is largely grown for bread products and ingredients, such as all-purpose flour.

For the study, the researchers grew test plots of winter wheat in two different areas of Texas: the high plains of Amarillo and a farming area known as Winter Garden, Uvalde.

At each location, scientists grew 10 cultivars, or plant varieties, of winter wheat that received regular irrigation and another 10 cultivars that received 13 percent to 25 percent less irrigation. The team compared the leaf wax of all the plots to gauge their drought tolerance.

The plot set to receive 25 percent less irrigation in Winter Garden ended up receiving 13 percent less because of greater-than-expected rainfall. But a similar plot grown with 25 percent less water in the most arid area, Amarillo, generated 50 percent more paraffin on its leaves than the other cultivars in all the other plots, which enabled the plants to tolerate their dry conditions.

"We see a strong effect in the higher and drier location," Feakins said. "We see the plants adapt to their environment and to better protect their leaves, allowing them to respond well to reduced irrigation."

The lower available water was tracked through carbon isotopes in the plant leaves and in the waxes themselves, tools that are used to reconstruct climates of the past from ancient waxes in sediments.

"This is part of an effort to breed crops that are more drought-resistant. In the world that we are in today, with warming reducing available water, there will be more demand for crops that are drought-resistant," Feakins said.

Feakins said the team will next consider which of their cultivated wheat crop offers the best resilience and are able to generate high yields with low irrigation or precipitation.

###

Other authors of the study were lead co-author Xiuwei Liu, Xuejun Dong (also corresponding author), Qingwu Xue, Thomas Marek, Daniel I. Leskovar, Clark B. Neely and Amir M. H. Ibrahim, all of Texas A&M University.

The study was funded by grants from Texas A&M AgriLife Research and the Texas Wheat Producers Board.

Media Contact

Emily Gersema
[email protected]
213-361-6730
@USC

Looking to the Sky

Original Source

https://pressroom.usc.edu/the-key-to-drought-tolerant-crops-may-be-in-the-leaves/ http://dx.doi.org/10.1016/j.orggeochem.2017.07.020

Share12Tweet8Share2ShareShareShare2

Related Posts

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

August 28, 2025
Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

August 28, 2025

Decades-Old Molecular Biology Mystery Uncovered: Cells Use a Molecular Stopwatch to Gauge RNA Tail Lengths

August 28, 2025

Exploring Genetic Diversity in Extra-Early Orange Maize

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Technique Promises Enhanced Detection of Corrosion and Cracking in Nuclear Reactors

Dopamine vs. Epinephrine in Neonatal Septic Shock

Comparing Treatment Intensification Timing in Type 2 Diabetes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.