• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The invisible smallest particles matter for the air we breathe

Bioengineer by Bioengineer
February 23, 2021
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lubna Dada

Researchers of the University of Helsinki have resolved for the first time, how the ultrafine particles of atmosphere effect on the climate and health.

Atmospheric air pollution kills more than 10,000 people every day. The biggest threat to human health has been assumed to be the mass accumulation of atmospheric particles with diameter smaller 2.5 μm: the higher the mass and loss of visibility, the bigger the threat.

The researchers of the Institute for Atmospheric and Earth System Research (INAR) at the University of Helsinki together with collaborators in China discovered that if we want to solve the accumulation of the biggest particles, we need to start with the smallest.

Until recent studies, very little attention had been given to the ultrafine particles, smaller than 100 nm in diameter, since their weight and surface area are comparably negligible. It has been controversial whether these particles can grow to relevant sizes where they can affect visibility and human health.

“We found that the smallest particles matter the most”, says Academician Markku Kulmala from the Institute for Atmospheric and Earth System Research (INAR).

The results of two studies were recently published in Faraday Discussion and Nature NPJ climate and atmospheric science.

Sur­vival to mass rel­ev­ant sizes

When there are enough precursor vapors available and when the conditions are favorable, particles forming in the atmosphere through gas-to-particle conversion at ~1 nm in diameter appear abruptly in the air. This atmospheric phenomenon known as New Particle Formation is observed in many different environments around the world.

“We are speaking of hundred thousands of particles per cubic centimeter especially in Megacities where increased population meets increased pollution”, says Lubna Dada from the Institute for Atmospheric and Earth System Research (INAR).

The researchers tackled the for-long controversial topic whether these smallest particles have an effect on haze formation, visibility and air pollution. In two parallel studies, they deployed the most up-to-date state-of-the-art instrumentation in the center of Beijing to tackle ‘haze’.

In the first study, they followed the growth and chemical composition of the freshly formed particles from sizes ~ 1 nm until those reached sizes where they contribute to mass accumulation, in an attempt to understand the reasons behind their formation and survival to mass relevant sizes.

In the second study, the researchers deployed sophisticated instrumentation at ground level and at a 260 m and estimated the contribution of ground base sources to haze formation and accumulation.

Also the smal­lest matter

The results showed that In Megacities, Beijing in this case, the smallest particles are formed from gaseous sulfuric acid and ammonia or amines, which are ubiquitous. The particles grow via condensation of organics and nitrate which are equally available throughout the city.

While traffic and other anthropogenic activities do contribute to haze formation, new particle formation and growth are equally important.

In order to alleviate the air pollution problem and to reduce haze, the researchers suggest an increased attention towards the very small particles and vapors.

“It´s crucial to control the precursor vapors needed to form the particles and the vapors needed to grow them”, Dada says.

A bubble pre­vent­ing di­lu­tion

It was also found in the studies that new particle formation is a regional phenomenon happening over 100 of kilometers, while its amplification and growth to haze relevant sizes is rather local. The increased pollution on ground level together with amplified urbanization like high buildings create something like a bubble which separates the city from the upper atmosphere.

The more pollution is trapped in this bubble, the more stable it makes it, preventing the pollutants from being diluted into the upper atmosphere and concentrating pollution inside the city where people live. It is a runaway effect, the more pollutants are emitted the more trapping happens, making haze even worse at ground level.

“In brief, it is not only the particles that are directly emitted by anthropogenic activities such as traffic and industry need to be controlled, but also the associated vapors which are capable of forming seed particles on their own or grow those that are already present. To solve the big, we need to start small,” Dada summarizes.

###

Pub­lic­a­tions:

Kulmala et al. (2021). Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities? Faraday Discussions.
https://pubs.rsc.org/en/content/articlelanding/2021/FD/D0FD00078G#!divAbstract

Du and Dada et al. (2021). A 3D study on the amplification of regional haze and particle growth by local emissions. Nature NPJ climate and atmospheric science.
https://www.nature.com/articles/s41612-020-00156-5

More in­for­ma­tion:

Markku Kulmala

Academician, Professor, University of Helsinki

Institute for Atmospheric and Earth System Research (INAR)

[email protected]

+358 40 596 2311

Twitter: @MarkkuKulmala1

Lubna Dada

Doctor, Postdoctoral Researcher, University of Helsinki

Institute for Atmospheric and Earth System Research (INAR)

[email protected]

+358 50 448 8568

Twitter: @Dadalubna

Wei Du

Doctor, Postdoctoral Researcher, University of Helsinki

Institute for Atmospheric and Earth System Research (INAR)

[email protected]

Media Contact
Johanna Pellinen
[email protected]

Original Source

https://www.helsinki.fi/en/news/science-news/the-invisible-smallest-particles-matter-for-the-air-we-breathe

Related Journal Article

http://dx.doi.org/10.1039/d0fd00078g

Tags: Atmospheric ScienceAtomic/Molecular/Particle PhysicsMortality/LongevityPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Trametes NF1 Boosts Alfalfa Growth Under Saline Stress

August 5, 2025
blank

New Trematode Species Found in Mediterranean Cardinal Fish

August 5, 2025

Ultrasound L-Lysine Boosts Pork Color Stability

August 5, 2025

Effortless Weight Loss: Achieving Results Without Nausea

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Trametes NF1 Boosts Alfalfa Growth Under Saline Stress

Necrotizing Fasciitis Fatality in Casted Arm Uncovered

New Trematode Species Found in Mediterranean Cardinal Fish

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.