• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The imitation game: Scientists describe and emulate new quantum state of entangled photons

Bioengineer by Bioengineer
March 18, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team from ITMO University, with the help of their colleagues from Moscow Institute of Physics and Technology (Russia) and Politecnico di Torino (Italy), has predicted a novel type of topological quantum state of 2 photons

IMAGE

Credit: Department of Physics, ITMO University


A research team from ITMO University, with the help of their colleagues from MIPT (Russia) and Politecnico di Torino (Italy), has predicted a novel type of topological quantum state of two photons. Scientists have also applied a new, affordable experimental method for testing this prediction. The method relies on the analogy: instead of expensive experiments with quantum systems of two or more entangled photons, the researchers have used resonant electric circuits of higher dimensionality described by similar equations. The obtained results can be useful for the engineering of optical chips and quantum computers without the need for expensive experiments. The research was published in Nature Communications.

Light plays a key role in modern information technologies: with its help, information is transmitted over large distances via optical fibers. In the future, scientists anticipate the invention of optical chips and computers that process information with the help of photons – light quanta – instead of electrons, as it is done today. This will decrease energy consumption, while also increasing the capabilities of computers. However, to turn these predictions into reality, fundamental and applied research of light behavior at the micro- and nanoscale is needed.

ITMO University physicists, with the help of their colleagues from the Moscow Institute of Physics and Technology (Russia) and Politecnico di Torino (Italy), have theoretically predicted the formation of a new quantum state of photons: two photons propagating in the array of quantum microresonators (qubits) can form a bound pair and settle down on the edge of the array. A proper experiment demands special nanostructures, as well as special devices to create such quantum state of photons and detect it. Currently, such capabilities are available only to very few research teams worldwide.

If conducting a precise experiment is too expensive, it may be useful to come up with a model, or an analogy, which would allow one to test the theoretical assumptions without spending too many resources. This is exactly what ITMO University physicists managed to do. They have drawn an analogy between a specific class of quantum systems and classical electric circuits of higher dimensionality.

“We connect various points on the board to an external power source and study the system’s response using a multimeter and oscilloscope,” explains Nikita Olekhno, PhD student at ITMO University. “The result is described by classical equations that in our case coincide with the quantum equations describing two-photon states in the array of qubits. The same equations must have the same solutions, and it doesn’t matter whether it’s a wave function of a quantum particle or an electric potential.”

Of course, the analogy that ITMO University scientists have come up with can not entirely replace experiments with quantum systems. However, the classical structure that was developed by the team allows researchers to conduct many experiments, providing valuable information for the field of quantum photonics. The fact that the scientists from St. Petersburg managed to find such an analogy for quantum systems of many particles for the first time is very promising.

“Theory is always ahead of experimental capabilities. To be at the forefront of theory, we study subtle effects that we will be able to detect experimentally only in several years,” says Maxim Gorlach, head of the project and Senior Researcher at ITMO University. “We are currently conducting a series of experiments in this field by researching topological edge states of more exotic quantum systems and developing ways of their emulation. Such experiments are important both for fundamental physics and future practical applications.”

###

Media Contact
Alena Gupaisova
[email protected]
7-909-160-5018

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-14994-7

Tags: Chemistry/Physics/Materials SciencesComputer ScienceOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Hidden Diversity of Trichuris incognita Redefines Whipworm

November 7, 2025
blank

Improving Real-Time Animal Detection with AI Innovations

November 7, 2025

Post-Traumatic Growth in South Korean Stem Cell Patients

November 7, 2025

Tumor Index Predicts Stage I Gastric Cancer Recurrence

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hidden Diversity of Trichuris incognita Redefines Whipworm

Improving Real-Time Animal Detection with AI Innovations

Post-Traumatic Growth in South Korean Stem Cell Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.