• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The early days of the Milky Way revealed

Bioengineer by Bioengineer
July 22, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study led by researchers from the Instituto de Astrofísica de Canarias (IAC) puts a sequence to the events which gave rise to our Galaxy

Credit: Gabriel Pérez Díaz, SMM (IAC).

The universe 13,000 million years ago was very different from the universe we know today. It is understood that stars were forming at a very rapid rate, forming the first dwarf galaxies, whose mergers gave rise to the more massive present-day galaxies, including our own. However the exact chain of the events which produced the Milky Way was not known until now.

Exact measurements of position, brightness and distance for around a million stars of our galaxy within 6,500 light years of the sun, obtained with the Gaia space telescope, have allowed a team from the IAC to reveal some of its early stages. “We have analyzed, and compared with theoretical models, the distribution of colours and magnitudes (brightnesses) of the stars in the Milky Way, splitting them into several components; the so-called stellar halo (a spherical structure which surrounds spiral galaxies) and the thick disc (stars forming the disc of our Galaxy, but occupying a certain height range)” explains Carme Gallart, a researcher at the IAC and the first author of this article, which is published today in the journal Nature Astronomy.

Previous studies had discovered that the Galactic halo showed clear signs of being made up of two distinct stellar components, one dominated by bluer stars than the other. The movement of the stars in the blue component quickly allowed us to identify it as the remains of a dwarf galaxy (Gaia-Enceladus) which impacted onto the early Milky Way. However the nature of the red population, and the epoch of the merger between Gaia-Enceladus and our Galaxy were unknown until now.

“Analyzing the data from Gaia has allowed us to obtain the distribution of the ages of the stars in both components and has shown that the two are formed by equally old stars, which are older than those of the thick disc” says IAC researcher and co-author Chris Brook. But if both components were formed at the same time, what differentiates one from the other? “The final piece of the puzzle was given by the quantity of “metals” (elements which are not hydrogen or helium) in the stars of one component or the other” explains Tomás Ruiz Lara, an IAC researcher and another of the authors of the article. “The stars in the blue component have a smaller quantity of metals than those of the red component”. These findings, with the addition of the predictions of simulations which are also analyzed in the article, have allowed the researchers to complete the history of the formation of the Milky Way.

Thirteen thousand million years ago stars began to form in two different stellar systems which then merged: one was a dwarf galaxy which we call Gaia-Enceladus, and the other was the main progenitor of our Galaxy, some four times more massive and with a larger proportion of metals. Some ten thousand million years ago there was a violent collision between the more massive system and Gaia-Enceladus. As a result some of its stars, and those of Gaia-Enceladus were set into chaotic motion, and eventually formed the halo of the present Milky Way. After that there were violent bursts of star formation until 6,000 million years ago, when the gas settled into the disc of the Galaxy, and produced what we know as the “thin disc”.

“Until now all the cosmological predictions and observations of distant spiral galaxies similar to the Milky Way indicate that this violent phase of merging between smaller structures was very frequent” explains Matteo Monelli, a researcher at the IAC and a co-author of the article. Now we have been able to identify the specificity of the process in our own Galaxy, revealing the first stages of our cosmic history with unprecedented detail.

###

Scientific article: Carme Gallart, Edouard J. Bernard, Chris B. Brook, Tomás Ruiz-Lara, Santi Cassisi, Vanessa Hill and Matteo Monelli. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nature Astronomy (22 July 2019). DOI: 10.1038/s41550-019-0829-5

Youtube link: https://youtu.be/x4yut8LxGvY

Media Contact
Prensa IAC
[email protected]

Original Source

http://www.iac.es/divulgacion.php?op1=16&id=1595&lang=en

Related Journal Article

http://dx.doi.org/10.1038/s41550-019-0829-5

Tags: AstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025
Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fluctuating DNA Methylation Maps Cancer Evolution

Ultrabroadband Carbon Nanotube Scanners Revolutionize Pharma Quality

Amino Acids Stabilize Proteins and Colloids

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.