• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The discovery of a tRNA modification enzyme that also acts on nucleosides

by
July 18, 2024
in Biology
Reading Time: 3 mins read
0
Figure1 Synthesis of archaeosine in tRNA
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The genetic information on DNA is transcribed into messenger RNA (mRNA) and translated to the amino acid sequence by transfer RNA (tRNA) on the ribosome.  Modified nucleosides within RNA are involved in maintaining and regulating the protein synthesis system.  Archaeosine is a modified nucleoside found only in the tRNAs from archaea, the so-called third domain of life, and contributes to the maintenance of the L-shaped tRNA three-dimensional structure.  The synthesis of archaeosine involves multiple steps, with the first step introducing a preQ0 base into tRNA via ArcTGT.  In the second step, ArcS transfers an amino acid, lysine, to the preQ0 base in tRNA and synthesizes preQ0-Lys as an intermediate.  The resultant preQ0-Lys in tRNA is then converted into archaeosine by RaSEA, the third-step enzyme.

Figure1 Synthesis of archaeosine in tRNA

Credit: Hiroyuki Hori, Shu Fujita, Ehime University

The genetic information on DNA is transcribed into messenger RNA (mRNA) and translated to the amino acid sequence by transfer RNA (tRNA) on the ribosome.  Modified nucleosides within RNA are involved in maintaining and regulating the protein synthesis system.  Archaeosine is a modified nucleoside found only in the tRNAs from archaea, the so-called third domain of life, and contributes to the maintenance of the L-shaped tRNA three-dimensional structure.  The synthesis of archaeosine involves multiple steps, with the first step introducing a preQ0 base into tRNA via ArcTGT.  In the second step, ArcS transfers an amino acid, lysine, to the preQ0 base in tRNA and synthesizes preQ0-Lys as an intermediate.  The resultant preQ0-Lys in tRNA is then converted into archaeosine by RaSEA, the third-step enzyme.

This synthesis pathway of archaeosine was elucidated in 2019 through a collaborative study by Ehime University and Gifu University (Figure 1: Yokogawa et al., Nature Chem. Biol. (2019)). However, the substrate specificity of the second-step enzyme ArcS was previously unknown.

To address this issue, a research group led by Professor Hiroyuki Hori, Lecturer Dr. Ryota Yamagami, and graduate students Shu Fujita, Yuzuru Sugio, and Dr. Takuya Kawamura (currently at Thomas Jefferson University, USA) at the Graduate School of Science and Engineering, Ehime University, in collaboration with Professors Takashi Yokogawa and Natsuhisa Oka from Gifu University and Associate Professor Akira Hirata from Tokushima University, conducted biochemical analyses.

Most RNA modification enzymes recognize the three-dimensional structure around the target site of RNA and only rarely the RNA sequence itself.  To investigate the substrate RNA specificity of ArcS, preQ0-modified tRNA was fragmented using DNAzymes, and lysine transfer was assessed for each fragment (Figure 2).  Surprisingly, ArcS transferred lysine to all RNA fragments containing preQ0.  In the 21-nucleotide (21 nt) RNA fragment, not only the whole tRNA structure, but also the D-arm structure was disrupted.  This result demonstrates that ArcS does not recognize the three-dimensional structure of substrate RNA. To identify the minimum substrate, lysine-transfer was assessed using the preQ0 base, preQ0 nucleoside, 5′-phosphorylated preQ0 nucleotide, and 3′-phosphorylated preQ0 nucleotide (Figure 3).  It was found that the minimum substrate was the preQ0 nucleoside, with reaction efficiency increasing when a phosphate group was attached to the 5′ position.  Thus, ArcS is an unprecedented tRNA modification enzyme that can act on a nucleoside as the substrate.

With the development of mRNA vaccines for COVID-19, modified nucleosides like pseudouridine and 1-methylpseudouridine are effectively used, and research on introducing various modifications into target RNAs are being conducted globally.  The discovery of ArcS, which can utilize a nucleoside as a minimum substrate, provides new insights into the synthesis of precursor molecules for these modified nucleosides.

The results of this research were published online in the Journal of Biological Chemistry on June 27, 2024.



Journal

Journal of Biological Chemistry

DOI

10.1016/j.jbc.2024.107505

Share12Tweet8Share2ShareShareShare2

Related Posts

South American Long-Necked Dinosaur Adapted for Easy Bipedal Stance

South American Long-Necked Dinosaur Adapted for Easy Bipedal Stance

October 23, 2025
blank

Revolutionary Discovery Challenges Six Decades of Understanding in Fat Metabolism and Obesity

October 23, 2025

Breakthrough Discovery Unveils New Method to Eliminate Cancer-Linked Molecule

October 23, 2025

Michael Laposata Honored with Champion for Innovation Award by Association for Molecular Pathology

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    163 shares
    Share 65 Tweet 41
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Redefining Birth: Ethics of Artificial Womb Technology

Highlighting the Hidden Risks of Heart Disease

South American Long-Necked Dinosaur Adapted for Easy Bipedal Stance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.