• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The devil is in the details: Re-imagining fertilizer precursor synthesis

Bioengineer by Bioengineer
March 22, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – The Haber–Bosch reaction helps feed the world by converting nitrogen into ammonia, a fertilizer precursor. However, its carbon footprint is huge: this one reaction is the source of nearly 2% of global carbon emissions. Now, in a study recently published in ACS Energy Letters, researchers from Osaka University have helped re-imagine this reaction to improve the sustainability of the chemical industry.

Fig. 1

Credit: 2023 Katayama et al., Water Increases the Faradaic Selectivity of Li-Mediated Nitrogen Reduction. ACS Energy Letters

Osaka, Japan – The Haber–Bosch reaction helps feed the world by converting nitrogen into ammonia, a fertilizer precursor. However, its carbon footprint is huge: this one reaction is the source of nearly 2% of global carbon emissions. Now, in a study recently published in ACS Energy Letters, researchers from Osaka University have helped re-imagine this reaction to improve the sustainability of the chemical industry.

Replacing the Haber–Bosch reaction with a more sustainable alternative has been an active area of research for many years. These efforts have led to a globally well-established electrochemical reaction for ammonia synthesis. However, efforts at optimizing this reaction are hindered by insufficient understanding of how it proceeds. A general consensus is the need to minimize the water concentration in the reaction as much as possible. Revisiting this consensus—with the goal of providing chemical reaction details that will be useful for optimizing ammonia production—is the problem that the researchers sought to address.

“There are various creative ways to improve the Faradaic efficiency by increasing the nitrogen partial pressure or solubility,” explains Yu Katayama. “We have complemented these studies by showing that trace water can facilitate the reaction progress.”

The researchers report a trace water concentration (ca. 36 millimolar) and a lithium perchlorate concentration (0.8 molar) that results in a Faradaic efficiency of ca. 28% at atmospheric pressure. This selectivity is the highest reported to date at ambient pressure, without using a gas diffusion electrode.

“X-ray photoelectron spectroscopy experiments indicate that the selectivity is attributable in part to the trace water facilitating lithium oxide incorporation into the solid electrolyte interphase,” says Katayama. “Higher water concentrations might facilitate hydrogen evolution, an undesired side reaction.” “This surprising result can only be found with help and discussion with researchers from ICL. I believe the outcome emphasizes the importance of research collaboration.”

This work succeeded in improving the Faradaic efficiency of nitrogen reduction into ammonia at ambient pressure by straightforward means and uncovering the chemistry that leads to this result. Fine-tuning chemical process parameters dramatically improved the output of this reaction. Thus, there are many previously discounted electrochemical systems that might be worthwhile revisiting for future research efforts that investigate their detailed mechanisms. Researchers are now closer to optimizing fertilizer precursor synthesis in industry and minimizing the carbon footprint of its production.

###

The article, “Water Increases the Faradaic Selectivity of Li-Mediated Nitrogen Reduction,” was published in ACS Energy Letters at DOI: 10.1021/acsenergylett.2c02792



Journal

ACS Energy Letters

DOI

10.1021/acsenergylett.2c02792

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Water increases the Faradaic selectivity of Li-mediated nitrogen reduction

Article Publication Date

31-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mitophagy and Proteasomal Degradation Defend Postnatal Muscle Health

Transplant Policies: Undocumented Immigrants vs. Tourists

Revolutionizing Primary Care with Generative AI Solutions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.