• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

The cost of computation

Bioengineer by Bioengineer
April 8, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For decades, physicists have wrestled with understanding the thermodynamic cost of manipulating information, what we would now call computing. How much energy does it take, for example, to erase a single bit from a computer? What about more complicated operations? These are pressing, practical questions, as artificial computers are energy hogs, claiming an estimated four percent of total energy consumed in the United States.

These questions are not limited to the digital machines constructed by us. The human brain can be seen as a computer — one that gobbles an estimated 10 to 20 percent of all the calories a person consumes. Living cells, too, can be viewed as computers, but computers that “are many orders of magnitude more efficient” than any laptop or smartphone humans have constructed, says David Wolpert of the Santa Fe Institute.

Wolpert, a mathematician, physicist, and computer scientist, has been on the frontlines of a rapid resurgence of interest in a deep understanding of the energy cost of computing. That research is now hitting its stride, thanks to advances in using some revolutionary tools recently developed in statistical physics, in order to understand the thermodynamic behavior of nonequilibrium systems. The reason these tools are so important is that computers are decidedly nonequilibrium systems. (Unplug your laptop and wait for it to reach equilibrium, and then see if it still works.) Although Wolpert primarily approaches these issues using tools from computer science and physics, there is also sharp interest from researchers in other areas, including those who study chemical reactions, cellular biology, and neurobiology.

However, research in nonequilibrium statistical physics largely happens in silos, says Wolpert. In a review published today in the Journal of Physics A, Wolpert collects recent advances in understanding the thermodynamics of computation that are grounded in computer science and physics. The review functions as a sort of state-of-the-science report for a burgeoning interdisciplinary investigation.

“It is basically a snapshot of the current state of the fields, where these ideas are starting to explode, in all directions,” says Wolpert.

In the paper, Wolpert first summarizes the relevant theoretical ideas from physics and computer science. He then discusses what’s known about the entropic cost of a range of computations, from erasing a single bit to running a Turing machine. He goes on to show how breakthroughs in nonequilibrium statistical physics have enabled researchers to more formally probe those cases — moving far beyond simple bit erasure.

Wolpert also touches on the questions raised in this recent research which suggest real-world challenges, like how to design algorithms with energy conservation in mind. Can biological systems, for example, serve as inspiration for designing computers with minimal thermodynamic cost?

“We are being surprised and astonished in many ways,” Wolpert says. In putting together the review, and coediting a book on the topic due out later this year, “we’ve uncovered phenomena that no one has analyzed before that were very natural to us, as we pursue this modern version of the thermodynamics of computation.”

###

Media Contact
J Marshall
[email protected]

Tags: Calculations/Problem-SolvingChemistry/Physics/Materials SciencesComputer ScienceEnergy/Fuel (non-petroleum)HardwareMathematics/StatisticsSystems/Chaos/Pattern Formation/ComplexityTechnology/Engineering/Computer ScienceTheory/Design
Share13Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    41 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Virtual Lab Engineers New SARS-CoV-2 Nanobodies

GBA1 Variants’ Impact on Parkinson’s: In Silico Analysis

Rotterdam Oncology: Premier Head & Neck Biobank

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.