• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The brain’s hippocampus can organize memories for events as well as places

Bioengineer by Bioengineer
June 8, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: RIKEN

People organize memories in photo albums, journals or calendars, but how does the brain first put events in order? Though a great deal of work has been done on how the brain encodes memory for locations, leading to the discovery of 'place cells' in the hippocampus, we still have relatively little understanding of how personally experienced, or episodic, memories are represented by neurons. Now, researchers at Japan's RIKEN Brain Science Institute have found that the hippocampus can generalize, putting not just places but also events into sequence by changing the neural code in the rat brain. These 'event cells' discovered by the researchers may be a bridge linking information about the world with subsequent decision-making.

Neurons have two main ways they can signal to each other: by changing the timing or the frequency of their firing. In this study, Shigeyoshi Fujisawa and colleagues looked at how these two parameters changed while rats did a decision-making task based on certain combinations of smells and sounds. Using non-spatial stimuli presented in sequence was crucial to demonstrating that cells in the hippocampus also represent events, not just places. The study was published in the journal Neuron on June 8.

The research team recorded the combined activity of a large number of neurons in central hippocampal area CA1 while rats were engaged in choosing different sound-odor combinations to get a water reward. Many cells displayed elevated activity in response to one or both stimuli–often with a strong preference for one odor or sound versus the other–and retained this activation through the 'decision' phase, indicating that the inputs were being integrated by the brain and retained in a specific order to facilitate a subsequent choice.

The hippocampus is known to have a 'refresh rate' of around 8 Hz–the theta cycle– which guides how often neurons update their activity, a phenomenon called theta-cycle phase precession. The researchers were particularly interested in how this cyclic organization of information is modified by inputs, like a smell event followed by a sound event followed by a decision. Among the neurons that were responsive to smells, the theta phase precession occurred only for 'preferred' odors, followed by a locking of their activity to the theta cycle. This occurred for about 90 per cent of smell-sensitive cells, and was true for an equally high proportion of choice-sensitive cells.

On a more global scale, assemblies of hippocampal neurons can also form theta sequences, coordinated sequential activation patterns representing past, present and future locations during animal navigation. The authors investigated whether theta sequences were also formed by this cue-combination task. Such sequences were indeed present, and it was possible to 'decode' whether neural spikes at different phases of the theta cycle represented real-time inputs–the moments when the smell or sound event happened–or future periods–the decision-making moment. "Spikes that were locked to different phases of the cycle could even tell us if the rat had made a correct, rewarded choice or chosen the wrong cue combination," said Fujisawa.

Finally, the conditions of the experiment were reversed: the previously rewarding sound-odor combination became incorrect and vice-versa. Rats learned the new relationship after a few days, and their brain cell activity adapted too, exhibiting the phase precession and locking observed before the switch. "This neural reorganization reflects the sequence of the events and can be flexibly remapped," commented Fujisawa. "Cells that encode specific cues, combinations or choices can collectively represent an entire sequence of events when they become temporally organized with the hippocampal theta phase." The researchers surmise that the function of the hippocampus is to organize networks of relational elements, whether these are locations or events, as a mechanism underlying both episodic and spatial memory.

###

Reference:

Terada S, Sakurai Y, Nakahara H, Fujisawa S (2017) Temporal and rate coding for discrete event sequences in the hippocampus. Neuron. doi: 10.1016/j.neuron.2017.05.024.

Media Contact

adam phillips
[email protected]
@riken_en

http://www.riken.jp/en/

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2017.05.024

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025

New Evolutionary Classification of Rare CRISPR–Cas Variants

November 6, 2025

European Research Council Awards €10M Synergy Grant to RODIN Project Exploring Cells as Architects of Next-Generation Biomaterials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CMTR2 Mutation in Lung Cancer Reveals Therapy Targets

Two Residues Enable Symbiotic Nitrogen Immunity

Transforming Sea Star Biomass into Whiteleg Shrimp Feed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.