• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The 16 genetic markers that can cut a life story short

Bioengineer by Bioengineer
July 27, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Why do some of us live longer than others? While the environment in which we live, including our socio-economic status or the food we eat, plays the biggest part, about 20 to 30% of the variation in human lifespan comes down to our genome. Changes in particular locations in our DNA sequence, such as single-nucleotide polymorphisms (SNPs), could therefore hold some of the keys to our longevity.

Until now, the most comprehensive studies had found only two hits in the genome, points out Prof. Zoltan Kutalik, Group Leader at SIB and assistant professor at the Institute of Social and Preventive Medicine (CHUV).

In a new study, a team of scientists, led by Kutalik, has used an innovative computational approach to analyse a dataset of 116,279 individuals and probe 2.3 million human SNPs.

An unparalleled number of SNPs associated with lifespan (16) were uncovered, including 14 new to science. In our approach, we prioritized changes in the DNA known to be linked to age-related diseases in order to scan the genome more efficiently, says Kutalik. This is the largest set of lifespan-associated genetic markers ever uncovered.

About 1 in 10 people carry some configurations of these markers that shorten their life by over a year compared with the population average. In addition, a person inheriting a lifespan-shortening version of one of these SNPs may die up to seven months earlier.

The approach also enabled the researchers to explore how the DNA changes affected lifespan in a holistic way. They found that most SNPs had an effect on lifespan by impacting more than a single disease or risk factor, for example through being more addicted to smoking as well as through being predisposed to schizophrenia.

The discovered SNPs, combined with gene expression data, allowed the researchers to identify that lower brain expression of three genes neighbouring the SNPs (RBM6, SULT1A1 and CHRNA5, involved in nicotine dependence) was causally linked to increased lifespan.

These three genes could therefore act as biomarkers of longevity, i.e. survival beyond 85-100 years. To support this hypothesis, we have shown that mice with a lower brain expression level of RBM6 lived substantially longer, comments Prof. Johan Auwerx, professor at the EPFL.

"Interestingly, the gene expression impact of some of these SNPs in humans is analogous to the consequence of a low-calorie diet in mice, which is known to have positive effects on lifespan, adds Prof. Marc Robinson-Rechavi, SIB Group Leader and professor at the University of Lausanne.

Our findings reveal shared molecular mechanisms between human and model organisms, which will be explored in more depth in the future, concludes Prof. Bart Deplancke, SIB Group Leader and professor at the EPFL.

This study, which is a part of the AgingX Project supported by SystemsX.ch (the Swiss Initiative in Systems Biology), therefore brings us a step closer to grasping the mechanisms of human aging and longevity. It also proposes an innovative computational framework to improve the power of genomewide investigations of diseases more generally. As such, the framework could have promising applications in the field of personalized medicine.

###

Media Contact

Marie Dangles
[email protected]
41-216-924-075
@ISBSIB

http://www.isb-sib.ch

http://dx.doi.org/10.1038/NCOMMS15842

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Sex and Gender on Clinical Outcomes: Review

Impact of Sex and Gender on Clinical Outcomes: Review

December 29, 2025
Thousands of Lytic Phages Found in Bacterial Genomes

Thousands of Lytic Phages Found in Bacterial Genomes

December 29, 2025

Persistent Virulent Phages Found Across Bacterial Isolates

December 29, 2025

Metabolomic Insights into Eriocheir sinensis Infection Response

December 29, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Nursing through Active-Emphatic Listening Research

Incidental Appendectomy Outcomes in Pediatric Intussusception

Gender and Sex Influence Clinical Outcomes: A Review

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.