• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Testing effects of ‘noise’ on the decision-making abilities of slime mold

Bioengineer by Bioengineer
March 29, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jerry Kirkhart, Flickr

Foraging abilities of the amoeboid slime mold Physarum polycephalum may be improved by "noise" in the form of intermittent light exposure, according to a study published March 29, 2017, in the open-access journal PLOS ONE by Bernd Meyer from Monash University, Australia, and colleagues.

In the study, the researchers used a mathematical model to test how the slime mold would react to changing environments. To do this, a maze was created with two alternate pathways connecting two food sources. The researchers then used intermittent exposure to visible light, which slime molds try to avoid, as "noise" to see how the slime mold would react. In this environment, the model predicted that the slime mold was able to find an optimal physical distribution through the maze that balances its needs for chemical communication, food absorption, and avoidance of the light.

This paper builds on observations of slime molds foraging in stable environments, and extends research insights by proposing how a dynamic setting, one that mimics ever-changing conditions of the real world, may influence the adaptive abilities of this self-organized biological system. Further research is needed, but if this prediction is confirmed, the finding will align with mathematical properties that describe decision making in other self-organized social systems, such as bacterial and ant colonies, honey bee hives, and even human communities.

"Our work investigates decision making in the true slime mold, Physarum polycephalum, one of the most widely used model organism to study self-organization in biological systems," says Bernd Meyer. "It reveals that noise in self-organized decision making is a fundamental driver for the ability to flexibly adapt behavior in changing environments."

###

In your coverage please use this URL to provide access to the freely available article in PLOS ONE: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172933

Citation: Meyer B, Ansorge C, Nakagaki T (2017) The role of noise in self-organized decision making by the true slime mold Physarum polycephalum. PLoS ONE 12(3): e0172933. doi:10.1371/journal.pone.0172933

Funding: BM and TN received funding from the Australian Research Council (http://www.arc.gov.au/) under grant no. DP110101413. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Beth Jones
[email protected]

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025
blank

Survival Insights for 2021 WHO Glioma Patients

October 30, 2025

PFAS Levels Linked in Water and Southern California Adults

October 30, 2025

ECM, ROCK, and Polarity Orchestrate Lung Growth

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PhET Interactive Simulations Honored with Meggers Project Award

Survival Insights for 2021 WHO Glioma Patients

PFAS Levels Linked in Water and Southern California Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.