• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Test for antibiotic associated kidney damage in children with cystic fibrosis identified

Bioengineer by Bioengineer
March 28, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research, published in Nature Scientific Reports, conducted by the University and partners highlights effective methods for identifying a common side effect in children receiving drug treatments for Cystic fibrosis.

The genetic disorder, cystic fibrosis (CF) is characterised by secondary bacterial lung infections, often by a specific resistant bacteria, Pseudomonas aeruginosa. Antibiotics known as aminoglycosides have good efficacy against this bacteria and are often used to treat these infections.

However, aminoglycosides are potentially damaging to the kidneys. Despite risk reduction strategies, current or recent aminoglycoside exposure is strongly associated with acute kidney injury (AKI) in children with CF.

Biomarkers

Current methods for assessing kidney injury rely on the measurement of serum creatinine, a measure of kidney filtration. Unfortunately this method only highlights injury once significant damage has already occurred. This is particularly dangerous for children.

To identify patients at increased risk of kidney damage there is a need for the development of improved biomarkers that not only reflect the site of toxicity, but can identify damage at an earlier stage than currently possible.

To help identify biomarkers, researchers from the Universities of Liverpool and University College London, recruited more than 150 children and young adults up to 20 years of age with a confirmed diagnosis of CF. The participants provided urine samples for measurement of specific proteins, KIM-1 and NGAL, at regular outpatient appointments, and before, during and after exposure to clinically-indicated treatment with anaminoglycoside.

The researchers found that the concentrations of both KIM-1 and NGAL increased during exposure to an aminoglycoside. These increases occurred in the absence of increases in serum creatinine, and therefore likely represent renal damage without loss of function, commonly termed 'subclinical AKI'. The baseline (before treatment) concentration of KIM-1 increased with cumulative lifetime aminoglycoside exposure, suggesting it may also identify chronic renal damage.

Useful and non-invasive

The study was led by Dr Steve McWilliam a National Institute of Health Research Academic Clinical Lecturer in Paediatric Clinical Pharmacology from the University of Liverpool's Institute of Translational Medicine based at Alder Hey Children's NHS Foundation Trust.

Of the study Dr McWilliam said: "Our research shows that KIM-1 may be a useful, non-invasive, biomarker of acute and chronic kidney damage associated with exposure to aminoglycosides in patients with CF, but its clinical utility needs to be further evaluated in prospective studies."

###

The full paper, entitled "Urinary Biomarkers of Aminoglycoside-Induced Nephrotoxicity in Cystic Fibrosis: Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin", can be found here https://www.nature.com/articles/s41598-018-23466-4

Media Contact

Simon Wood
[email protected]
44-151-794-8356
@livuninews

http://www.liv.ac.uk

http://dx.doi.org/10.1038/s41598-018-23466-4

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Skin Microbiome Changes in Multiple System Atrophy

August 23, 2025
DCTPP1 Controls Oxidative Stress Through AUF1 in Trophoblasts

DCTPP1 Controls Oxidative Stress Through AUF1 in Trophoblasts

August 23, 2025

New Insights into Exercise’s Molecular Benefits in Parkinson’s

August 23, 2025

Muscle Dysmorphia and Body Image in Men

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skin Microbiome Changes in Multiple System Atrophy

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.