• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Test could detect patients at risk from lethal fungal spores

Bioengineer by Bioengineer
September 20, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at The University of Manchester have discovered a genetic mutation in humans linked to a 17-fold increase in the amount of dangerous fungal spores in the lungs.

The study, published in Nature Communications could allow doctors to screen patients at risk from Aspergillus, and could easily be developed into a test.

When breathed in, Aspergillus can be life threatening and also make asthma much worse, especially in people with compromised immune systems. It is found in soil, pillows and compost but is capable of living anywhere in a moist environment, so breathing it in is unavoidable.

Aspergillus is normally cleared from the lungs but 4% of people have this newly discovered mutation and in them, Aspergillus thrives in the airways.

"People with asthma, who have had transplant surgery, TB and many other illnesses that lower immunity could feasibly be screened for this genetic mutation. And early detection could save lives," said Dr Paul Bowyer who led the study funded by the Fungal infection Trust and supported by the NIHR Manchester Biomedical Research Centre.

Dr Sara Gago discovered the increased risk by comparing normal human cells to cells which had been gene edited to contain the mutation. The gene – known as ZNF77 – is mainly responsible for the extracellular matrix of the lungs' epithelial tissue- the membrane that protects them. These mutated cells had a weak response to Aspergillus showing how key epithelial cells are to normal defences against this airborne fungus.

Dr Bowyer said: "Until now we never really understood why some people have a much higher Aspergillus load than others. Now that we do, it's quite a significant advance in understanding this disease. We don't yet know how or why the mutation occurs but nevertheless this discovery provides the basis for a simple and inexpensive DNA test in those who people who are more at risk from Aspergillus."

Dr Gago is a Research Fellow funded by the National Centre for the Replacement, Reduction and Refinement of animals in research. She added: "ZNF77 doesn't actually occur in mice, so the only viable animal models besides humans are primates. Having developed a way to adapt human cell lines so that they can carry mutations associated with disease, we have avoided using primates or any animals entirely."

###

NOTES FOR EDITORS

Dr Gago and Dr Bowyer are available for comment

The paper 'Colonization of lungs by Aspergillus fumigatus is controlled by ZNF77' is published in Nature Communications. An embargoed copy is available on request.

For media enquires contact:

Mike Addelman
Media Relations Officer
Faculty of Biology, Medicine and Health
University of Manchester
0161 275 2111
07717 881567

Media Contact

Mike Addelman
[email protected]
44-771-788-1567
@UoMNews

http://www.manchester.ac.uk

http://dx.doi.org/10.1038/s41467-018-06148-7

Share12Tweet7Share2ShareShareShare1

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.