• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ten new awards from the National Science Foundation

Bioengineer by Bioengineer
July 10, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Leonid Moroz

Ten new awards from the National Science Foundation (NSF) totaling $14 million will enable biologists to develop enhanced genomic tools that can reveal new insights into why organisms are structured the way they are and function the way they do.

Genomic tools allow researchers to understand more about the genetic makeup, or genomes, of organisms. They also have the potential to show how gene function affects organisms' phenotypes — the physical and functional characteristics that result from an organism's genes interacting with its environment.

The cost of genomic tests has fallen in recent years, speeding the pace of discovery and allowing researchers to better measure gene expression. But researchers still often lack the tools needed to test their hypotheses about the functional relationships between genes and phenotype.

The Enabling Discovery through GEnomic Tools (EDGE) program, administered by NSF's Biological Sciences Directorate, funds projects that work to develop new genomic tools and provide the research community with information about how to use them.

"EDGE awards can bridge significant gaps in genomic research capabilities," said James Olds, NSF assistant director for Biological Sciences. "Every breakthrough made by one of these projects has the potential to lead to many more discoveries, as they will provide valuable new tools for entire fields of science."

EDGE-funded projects move the scientific community closer to being able to predict phenotype by developing enhanced genomic tools and infrastructure.

"If you can more easily and reliably determine cause-and-effect relationships between gene expression and an organism's physical characteristics or functions, you've opened important new doors for research," said EDGE Program Director William E. Zamer. "Understanding the relationships between genome and phenome is crucial for accelerating scientific advances about the structure and function of organisms."

Each of the awards focuses on enabling tests of gene function in one or more organisms with unique features, including species of fish, insects and amphibians. The species' uniqueness makes them well-suited to address fundamental biological questions.

One project, for example, focuses on a cyanobacterium scientists believe is likely responsible for 10 percent of the ocean's photosynthesis. Genomic tools to study the cyanobacterium could help advance research into the biochemistry of oceans, ocean modeling and ecology.

Developing better means to study the relationship between genes and phenotypes is a grand challenge in biology, and part of a broad quest within the field to better predict phenotype. The ability to foresee the characteristics of organisms would open opportunities for societal benefits ranging from new disease treatments and drug therapies to better crop yields. NSF identified this area of research as "Understanding the Rules of Life: Predicting Phenotype" in its 10 Big Ideas for future investment.

The new 10 EDGE-funded projects, principal investigators and sponsor institutions are:

  • Expanding the toolkit for functional genetics in threespine stickleback to place genomics into its natural context, Daniel Bolnick, University of Texas at Austin.
  • Development of genetic tools for the dominant phototroph in the sea, Sallie Chisholm, Massachusetts Institute of Technology.
  • Enabling genotype-phenotype studies in weakly electric fish, Jason Gallant, Michigan State University.
  • Rapid and efficient gene editing of amphibians through nuclear transfer from engineered cell lines, Gary Gorbsky, Oklahoma Medical Research Foundation.
  • Development of genetic and genomic resources for milkweed, Asclepias syriaca and Asclepias curassavica, Georg Jander, Boyce Thompson Institute.
  • Developing gene manipulation tools and resources for a vocal learning species, Claudio Mello, Oregon Health and Science University.
  • Nanoscale probes and infrastructure for real-time and single-cell genomics across metazoa, Leonid Moroz, University of Florida.
  • Accelerating arthropod genetic manipulation through ReMOT Control, Jason Rasgon, Pennsylvania State University.
  • Functional-genomics tools for Cnidarian-dinoflagellate symbiosis, Virginia Weis, Oregon State University.
  • Generating transgenic Cuscuta as a tool for studying plant interactions, James Westwood, Virginia Tech.

###

Media Contact

Robert Margetta
[email protected]
@NSF

http://www.nsf.gov

Share12Tweet8Share2ShareShareShare2

Related Posts

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

November 10, 2025
Incorporating Frailty and Age Metrics to Enhance Pancreatic Cancer Therapies

Incorporating Frailty and Age Metrics to Enhance Pancreatic Cancer Therapies

November 10, 2025

Key Genes Differ in X- and Y-Sperm of Bos indicus

November 10, 2025

NUS Medicine and CHA University Collaborate to Harness AI in Unlocking Novel Solutions for Reversing Male Infertility Decline

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Flexible Perovskite/Silicon Tandems Reach 33.6%

Examining Treatment Effects of Patent Ductus Arteriosus in Preemies

Texas Tech Professors Secure $12 Million Grant for Pioneering Data Center and AI Research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.