• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Telecommunications light amplifier could strengthen integrity of transmitted data

Bioengineer by Bioengineer
January 5, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of Dr. Dawn Tan

Imagine a dim light which is insufficiently bright enough to illuminate a room. An amplifier for such a light would increase the brightness by increasing the number of photons emitted. Photonics researchers have created such a high gain optical amplifier that is compact enough to be placed on a chip. The developed amplifier, when used within an optical interconnect such as a transceiver or fiber optic network, would help to efficiently increase the power of the transmitted light before it is completely depleted through optical losses.

Besides having the potential to replace bulky, expensive amplifiers used today for the study of attosecond science and ultrafast optical information processing, the newly developed nanoscale-amplifier also provides a critical element to the optical interconnects toolkit, potentially providing regenerative amplification in short to long range interconnects. This work was a collaborative effort between researchers at the Singapore University of Technology and Design (SUTD), A*STAR Data Storage Institute and the Massachusetts Institute of Technology. Details appeared in Nature Communications on January 4th 2017.

"We have developed an optical amplifier which is able to amplify light by 17,000 times at the telecommunications wavelength," said Assistant Professor Dawn Tan at SUTD who led the development of the amplifier. "We use a proprietary platform called ultra-silicon-rich nitride, with a material composition of seven parts silicon, three parts nitrogen, with the large nonlinearity and photon efficiency needed for high gain amplification, through the efficient transfer of photons from a pump to the signal. To give a sense of the scale, a conventional optical parametric amplifier costs several hundred thousand dollars, and occupies an entire optical table, while the newly developed amplifier is much smaller than a paper clip, and costs a fraction of the former."

Providing high gain on such a small footprint could enable new opportunities in low cost broadband spectroscopy, precision manufacturing and hyperspectral imaging. The device's efficiency is also revealed through cascaded four wave mixing, which is a higher order mixing of the amplified and converted photons. This phenomenon also allows the amplifier to operate as a tunable broadband light source, enabling cheaper and more efficient spectroscopic sensing and molecular fingerprinting than what is available today.

"The inefficiencies in highly nonlinear photonic devices are overcome here, by photonic device engineering for maximum nonlinearity, while still maintaining a sufficiently large bandgap to eliminate two-photon absorption at the telecommunications wavelength. We believe this is one of the highest gains demonstrated at the telecommunications wavelength to date on a CMOS chip" said Prof Tan.

Achieving ultra-large amplification while maintaining high compactness was possible because the researchers managed to design and implement an amplifier which operates simultaneously with a high nonlinearity and photon efficiency. In other platforms which are compatible with processes used in the electronics industry today, either the nonlinearity or photon efficiency is low.

"The results demonstrate the ultra-silicon-rich nitride platform to be extremely promising for highly efficient nonlinear optics applications, particularly in the field of CMOS photonics leveraging existing electronics infrastructure," says Dr. Doris Ng, Scientist III at the A*STAR Data Storage Institute.

###

Media Contact

Melissa Koh
[email protected]
65-649-98742

http://www.sutd.edu.sg

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Kaempferia parviflora’s Flavones Boost Melanogenesis by Blocking TPC2

November 18, 2025

Feeding Strategies for Children with Autism Explored

November 18, 2025

Forecasting the U.S. General Internal Medicine Workforce through 2037

November 18, 2025

Epitranscriptomic ac4C Drives Plant Growth, Stress Response

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Kaempferia parviflora’s Flavones Boost Melanogenesis by Blocking TPC2

Feeding Strategies for Children with Autism Explored

Forecasting the U.S. General Internal Medicine Workforce through 2037

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.