• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

TEDDY study compares characteristics of children diagnosed with type 1 diabetes before and after age 6

Bioengineer by Bioengineer
October 21, 2021
in Biology
Reading Time: 4 mins read
0
Jeffrey Krischer, PhD
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tampa, FL (Oct. 21, 2021) — New findings from the international The Environmental Determinants of Diabetes in the Young (TEDDY) study add to a growing body of evidence indicating that type 1 diabetes is not a single disease. The presentation and, perhaps, cause of autoimmune diabetes differs among genetically high-risk children, the research suggests. 

Jeffrey Krischer, PhD

Credit: Photo courtesy of USF Health

Tampa, FL (Oct. 21, 2021) — New findings from the international The Environmental Determinants of Diabetes in the Young (TEDDY) study add to a growing body of evidence indicating that type 1 diabetes is not a single disease. The presentation and, perhaps, cause of autoimmune diabetes differs among genetically high-risk children, the research suggests. 

In a cohort study published July 22 in Diabetologia, lead author Jeffrey Krischer, PhD, director of the Health Informatics Institute at the USF Health Morsani College of Medicine, and TEDDY colleagues compared the characteristics of type 1 diabetes diagnosed in children before vs. after age 6.  The paper’s senior author was Beena Akolkar, PhD, of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

“Our results underscore the importance of taking into account the age at development of multiple autoantibodies when evaluating risk factors for progression to a diabetes diagnosis,” said lead author Dr. Krischer, a Distinguished University Health Professor and co-chair for the National Institutes of Health-funded TEDDY consortium. “When the changing picture of autoantibody presentation is considered, it appears type 1 diabetes at an early age is a more aggressive form of the disease.”

In type 1 diabetes, a misdirected immune response attacks and destroys insulin-producing beta cells in the healthy person’s pancreas – a process occurring over months or many years. Four autoantibodies directed against the pancreatic β-cells — glutamic acid decarboxylase autoantibody (GADA), insulin autoantibody (IA), insulinoma-associated-protein-2 autoantibody (IA2-2A), and zinc transporter 8 autoantibody (ZnT8A) – are thus far the most reliable biological indicators of early type 1 diabetes, before symptoms appear. Not all children who test positive for one or more autoantibodies progress to a diagnosis of type 1 diabetes, which requires lifelong administration of insulin to control blood sugar levels and reduce health complications.

Over the last decade, TEDDY researchers have learned more about how the order, timing and type of autoantibodies can help predict which genetically susceptible children are most likely to get type 1 diabetes as they age.

For this multisite study in the U.S. and Europe, the researchers analyzed data from 8,502 children, all at genetically high risk for developing autoimmunity and type 1 diabetes. The children were followed from birth to a median of 9 years. Over this period, 328 study participants (3.9%) progressed from a presymptomatic stage in which autoantibodies first appeared in their circulating blood (signaling initial autoimmunity) to the onset of symptomatic type 1 diabetes.

Half of the 328 participants (2.0%) were diagnosed before age 6, while the other half (1.9%) developed diabetes between ages 6 and 12. The aim was to determine whether the younger group diagnosed with type 1 diabetes differed from the older group, which would suggest that a different form of type 1 diabetes emerges in children as they grow older.

Among the findings:

  • As expected, TEDDY participants who progressed to diabetes between ages 6 and 12 were more likely to have first-appearing autoantibodies to the pancreatic enzyme glutamic acid decarboxylase (GAD autoantibodies), while first-appearing insulin autoantibodies (IA antibodies) were much more common in younger children developing the disease.
     
  • The rate of progression to type 1 diabetes was slower if multiple (two or more) autoantibodies appeared after age 6 than if they were present before age 6.
     
  • The significant association of country of origin with diabetes risk found in the younger group declined in the older group. Conversely, the link between certain genotypes and a higher likelihood of developing diabetes significantly increased in the older children.
     
  • Among children 6 and older with multiple autoantibodies, family history did not appear to play a role in whether the child progressed to type 1 diabetes.

“Much of the observed differences in the relationship between genes and environmental exposures can be explained by the age at appearance of autoantibodies,” Dr. Krischer said. “That is important, because it means factors linked with diabetes risk need to be conditioned on age to be properly understood. There may be different environmental exposures occurring at different ages that trigger autoimmunity, or the same environmental trigger may act differently at different ages.”

###

The research was funded by grants from the NIDDK and several other NIH institutes, JDRF, and the Centers for Disease Control and Prevention (CDC); and supported in part by NIH/NCATS Clinical and Translational Science Awards.  
 

USF Health’s mission is to envision and implement the future of health. It is the partnership of the USF Health Morsani College of Medicine, the College of Nursing, the College of Public Health, the Taneja College of Pharmacy, the School of Physical Therapy and Rehabilitation Sciences, the Biomedical Sciences Graduate and Postdoctoral Programs, and USF Health’s multispecialty physicians group. The University of South Florida is a high-impact global research university dedicated to student success. Over the past 10 years, no other public university in the country has risen faster in U.S. News and World Report’s national university rankings than USF. For more information, visit health.usf.edu  



Journal

Diabetologia

DOI

10.1007/s00125-021-05514-3

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

Characteristics of children diagnosed with type 1 diabetes before vs after 6 years of age in the TEDDY cohort study

Article Publication Date

22-Jul-2021

COI Statement

There are no conflicts of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Genotype-Environment Interactions in Pejerrey Sex Differentiation

Genotype-Environment Interactions in Pejerrey Sex Differentiation

October 17, 2025
Enterobacter and Bacillus Enhance Composting, Cadmium Immobilization

Enterobacter and Bacillus Enhance Composting, Cadmium Immobilization

October 16, 2025

Rhythmic Gene Conservation Uncovered in Autotetraploid Potato

October 16, 2025

Vanderbilt Researcher Overcomes Major Challenge in AI-Driven Drug Discovery

October 16, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fatigued Hip Abductors Impact Biomechanics in Single-Leg Landings

Genotype-Environment Interactions in Pejerrey Sex Differentiation

Cancer Cells Harness Embryonic Gene Editors to Drive Tumor Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.