• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Technique to more effectively diagnose and treat cancer developed by Georgia State…

Bioengineer.org by Bioengineer.org
January 28, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A method to better trace changes in cancers and treatment of the prostate and lung without the limitations associated with radiation has been developed by Georgia State University researchers.

Their findings were published Wednesday, Nov. 17 in Scientific Reports by Nature.

The researchers developed a new imaging agent they named ProCA1.GRPR, and demonstrated that it leads to strong tumor penetration and is capable of targeting the gastrin-releasing peptide receptor expressed on the surface of diseased cells, including prostate, cervical and lung cancer.

Molecular imaging of cancer predictors using magnetic resonance imaging (MRI) offers better and improved understanding of various cancers, and drug activity during preclinical and clinical treatments. However, one of the major barriers in using MRI in evaluating specific disease predictors for diagnosis and monitoring drug effects is the lack of highly sensitive and specific imaging agents capable of showing the difference between normal tissue and tumors.

"ProCA1.GRPR has a strong clinical translation for human application and represents a major step forward in the quantitative imaging of disease biomarkers without the use of radiation," said Jenny Yang, lead author on the paper, Distinguished University Professor and associate director of the Center for Diagnostics and Therapeutics at Georgia State. "This information is valuable for staging disease progression and monitoring treatment effects."

The researchers' results are an important advancement for molecular imaging with a unique ability to quantitatively detect expression level and spatial distribution of disease predictors without using radiation.

"Our discovery is of great interest to both chemists and clinicians for disease diagnosis, including noninvasive early detection of human diseases, cancer biology, molecular basis of human diseases and translational research with preclinical and clinical applications," said Shenghui Xue, co-author on the paper and postdoctoral researcher in Georgia State's Department of Chemistry.

Improved imaging agents such as ProCA1.GRPR have implications in understanding disease development and treatment.

###

For more information about the researchers' findings, visit nature.com/articles/srep16214.

This material is based upon work supported by the National Institutes of Health under grant nos. EB007268, GM62999, CA118113, 1R41CA183376, RO1CA176001, P30EY06360, University of Georgia Bio-imaging Research Center under grant no. S10RR023706, and Georgia Research Alliance Ventures. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Breaking Barriers: Drug Repurposing Advances in Oncology

August 24, 2025
Grape Seed Nanoparticles Reduce Liver Inflammation and Damage

Grape Seed Nanoparticles Reduce Liver Inflammation and Damage

August 24, 2025

Evaluating Research Capacity in UK Local Authorities

August 24, 2025

Biological Control Flies: Deterrents Against Adelges tsugae

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    121 shares
    Share 48 Tweet 30
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breaking Barriers: Drug Repurposing Advances in Oncology

Grape Seed Nanoparticles Reduce Liver Inflammation and Damage

Evaluating Research Capacity in UK Local Authorities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.