• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Team shatters theoretical limit on bio-hydrogen production

Bioengineer by Bioengineer
July 25, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Scott Schrage, University of Nebraska-Lincoln

In 1977, researcher Rudolf Thauer proposed a theoretical ceiling on the amount of hydrogen that bacteria could produce via fermentation, the sugar-converting process also responsible for yogurt, beer and cheese.

Propelled by a genetic engineering technique that presents bacteria with a simple choice – adapt or die – research from the University of Nebraska-Lincoln just punched through that 40-year-old ceiling like Iron Man through papier-mâché.

A version of the Thermotoga maritima bacterium engineered by Raghuveer Singh, Paul Blum and their colleagues produced 46 percent more hydrogen per cell than a naturally occurring form of the same species. The team's highest reported yield – 5.7 units of hydrogen for every unit of glucose fed to the bacterium – easily surpassed the theoretical limit of 4 units.

The feat represents a breakthrough in the global effort to scale up the sustainable production of clean-burning hydrogen for vehicles and heavy industry, Singh said. Most commercial hydrogen comes from refining non-renewable fossil fuels such as natural gas, oil and coal – processes that generate sizable amounts of carbon dioxide.

"I always had been interested in microbes and their potential to make something useful," said Singh, a doctoral graduate of Nebraska who conducted the research as part of his dissertation. "The current hydrogen production technologies create a lot of environmental problems. My dream is to improve biological systems and make them more competitive with those technologies."

SLOWING THE SUGAR RUSH

The T. maritima bacterium ferments sugar into simpler carbon-based molecules that fuel two processes: growing new cells and producing so-called metabolites, one of which is hydrogen. But under normal conditions, most of that carbon gets funneled into the biological machinery that cranks out new cells, leaving little left over for hydrogen production.

"There's a strong coupling between hydrogen synthesis and the growth of new cells, and this coupling needs to be weakened in order to increase the yield of hydrogen," said Singh, now a postdoctoral researcher at the University of Florida.

So the researchers decided to temporarily inactivate a gene that has no effect on cell growth but slows hydrogen production in T. maritima. When they did, a second gene – this one involved in transporting sugar – spontaneously mutated to prevent a lethal buildup of sugar-based metabolites. That mutation also dramatically redirected the bacterium's energy expenditure from cell growth to hydrogen production, creating a new strain that the researchers named Tma 200.

After transferring the newly mutated gene into a naturally occurring version of T. maritima, the researchers found that the bacterium overproduced hydrogen just as Tma 200 did – confirming the influence of sugar uptake on hydrogen yields.

"We created the new organism using classical genetics because the necessary changes could not be predicted," said Blum, Charles Bessey Professor of Microbiology at Nebraska.

Singh, Blum and colleague Derrick White have since worked with technology-transfer office NUtech Ventures to apply for patent protection of the genetic technique, which Singh described as a "promising strategy" for increasing bacterial production of any potential metabolite.

"Hydrogen is just one of many possibilities," he said.

###

The team recently detailed its work in the journal Applied and Environmental Microbiology. Singh and Blum authored the study with White, a recent doctoral graduate now with NuTek Food Science; Yasar Demirel, associate professor of chemical and biomolecular engineering; and researchers from North Carolina State University and the University of Connecticut.

The researchers received support from the U.S. Department of Energy.

Media Contact

Raghuveer Singh
[email protected]
352-214-9540
@UNLNews

http://www.unl.edu

Original Source

https://news.unl.edu/newsrooms/today/article/team-shatters-theoretical-limit-on-bio-hydrogen-production/ http://dx.doi.org/10.1128/AEM.00998-18

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Syndrome Score Validated in Teens

Low PDA Shunt Linked to Premature Infant Risks

Hydrocortisone Use in Extremely Preterm Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.