• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 1, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Teaching AI to accurately colorize marine plankton images

Bioengineer by Bioengineer
October 27, 2022
in Biology
Reading Time: 3 mins read
0
Teaching AI to accurately colorize marine plankton images
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plankton are fundamental to the marine ecosystem and an indispensable means of modern marine ecological management. Since previous studies have shown that zooplankton are insensitive to long wavelength (i.e., red) light, such light is often used to make images of plankton as part of the ecological management process. Unfortunately, red light only produces grayscale images of plankton, thus losing information about their true color.

Teaching AI to accurately colorize marine plankton images

Credit: LI Jianping

Plankton are fundamental to the marine ecosystem and an indispensable means of modern marine ecological management. Since previous studies have shown that zooplankton are insensitive to long wavelength (i.e., red) light, such light is often used to make images of plankton as part of the ecological management process. Unfortunately, red light only produces grayscale images of plankton, thus losing information about their true color.

In response to this problem, a research team led by Dr. LI Jianping from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences (CAS) recently developed an automatic plankton colorization algorithm, the IsPlanktonCLR network, based on deep convolutional neural networks.

The algorithm is trained to convert gray images acquired under red lighting into high-fidelity color images. It can automatically and truthfully “dye” marine plankton grayscale images shot underwater into their natural colors, and the colorization effect is very close to human eye perception.

The study was released in the European Conference on Computer Vision (ECCV), which was held in Israel from October 23 to 27.

Researchers from Xiamen University and the Harbin Institute of Technology (Shenzhen) were also involved in the research.

The IsPlanktonCLR network uses a two-path structure with a self-guidance function, a customized color palette and a stepwise focusing loss function to achieve automatic colorization of plankton grayscale images. It shows excellent accuracy and fidelity in color restoration for rare species and key parts of common species.

In order to train and develop the IsPlanktonCLR algorithm, the team constructed a dataset containing thousands of color-gray plankton image pairs. Using this dataset, the team not only trained the colorization algorithm, but also compared its performance with state-of-the-art colorization algorithms. The experimental results showed that the IsPlanktonCLR algorithm offered the best results not only in terms of human visual perception but also in terms of peak signal to noise ratio (PSNR), structural similarity (SSIM), Fréchet inception distance (FID) and other classical metrics frequently used in machine vision.

In addition, existing colorization algorithms generally lack objective and quantitative evaluation metrics. Existing evaluation metrics not only have difficulty simulating the color perception ability of human vision but also have difficulty objectively evaluating the color similarity between the colored image and the ground-truth image.

Therefore, the researchers proposed a color similarity evaluation index, Color Dissimilarity (CDSIM), which combines a color histogram, color aggregation vector, color correlogram and color gradient. Through the tests on marine plankton and natural scene images, the researchers verified that CDSIM is not only effective in evaluating the effect of colorization algorithms but is also more suitable for image colorization evaluation in the field of scientific imaging than other existing metrics.

“The development of IsPlanktonCLR provides a new artificial intelligence solution for ocean imaging instruments to obtain accurate and real observation results,” said Dr. LI. “This provides new technical means for us understanding the ocean.”



DOI

10.1007/978-3-031-19839-7_13

Article Title

Colorization for in situ Marine Plankton Images

Article Publication Date

27-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Foreign Bodies in Sheep and Goats: Prevalence and Risks

Foreign Bodies in Sheep and Goats: Prevalence and Risks

December 31, 2025
Rethinking Gender Inference from Health Record Algorithms

Rethinking Gender Inference from Health Record Algorithms

December 31, 2025

Mapping RNA Editome Development in Ningxiang Pig Fat

December 31, 2025

Revealing Chloroplast Genomes: Insights on Plant Evolution

December 31, 2025

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    105 shares
    Share 42 Tweet 26
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metabolic Classification of Gliomas Revealed by Multi-Omics

Gender Gaps in Macular Thickness and Cognitive Function

Enhancing Cancer Treatment with Cureety Techcare Telemonitoring

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.