• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Teaching AI to accurately colorize marine plankton images

Bioengineer by Bioengineer
October 27, 2022
in Biology
Reading Time: 3 mins read
0
Teaching AI to accurately colorize marine plankton images
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plankton are fundamental to the marine ecosystem and an indispensable means of modern marine ecological management. Since previous studies have shown that zooplankton are insensitive to long wavelength (i.e., red) light, such light is often used to make images of plankton as part of the ecological management process. Unfortunately, red light only produces grayscale images of plankton, thus losing information about their true color.

Teaching AI to accurately colorize marine plankton images

Credit: LI Jianping

Plankton are fundamental to the marine ecosystem and an indispensable means of modern marine ecological management. Since previous studies have shown that zooplankton are insensitive to long wavelength (i.e., red) light, such light is often used to make images of plankton as part of the ecological management process. Unfortunately, red light only produces grayscale images of plankton, thus losing information about their true color.

In response to this problem, a research team led by Dr. LI Jianping from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences (CAS) recently developed an automatic plankton colorization algorithm, the IsPlanktonCLR network, based on deep convolutional neural networks.

The algorithm is trained to convert gray images acquired under red lighting into high-fidelity color images. It can automatically and truthfully “dye” marine plankton grayscale images shot underwater into their natural colors, and the colorization effect is very close to human eye perception.

The study was released in the European Conference on Computer Vision (ECCV), which was held in Israel from October 23 to 27.

Researchers from Xiamen University and the Harbin Institute of Technology (Shenzhen) were also involved in the research.

The IsPlanktonCLR network uses a two-path structure with a self-guidance function, a customized color palette and a stepwise focusing loss function to achieve automatic colorization of plankton grayscale images. It shows excellent accuracy and fidelity in color restoration for rare species and key parts of common species.

In order to train and develop the IsPlanktonCLR algorithm, the team constructed a dataset containing thousands of color-gray plankton image pairs. Using this dataset, the team not only trained the colorization algorithm, but also compared its performance with state-of-the-art colorization algorithms. The experimental results showed that the IsPlanktonCLR algorithm offered the best results not only in terms of human visual perception but also in terms of peak signal to noise ratio (PSNR), structural similarity (SSIM), Fréchet inception distance (FID) and other classical metrics frequently used in machine vision.

In addition, existing colorization algorithms generally lack objective and quantitative evaluation metrics. Existing evaluation metrics not only have difficulty simulating the color perception ability of human vision but also have difficulty objectively evaluating the color similarity between the colored image and the ground-truth image.

Therefore, the researchers proposed a color similarity evaluation index, Color Dissimilarity (CDSIM), which combines a color histogram, color aggregation vector, color correlogram and color gradient. Through the tests on marine plankton and natural scene images, the researchers verified that CDSIM is not only effective in evaluating the effect of colorization algorithms but is also more suitable for image colorization evaluation in the field of scientific imaging than other existing metrics.

“The development of IsPlanktonCLR provides a new artificial intelligence solution for ocean imaging instruments to obtain accurate and real observation results,” said Dr. LI. “This provides new technical means for us understanding the ocean.”



DOI

10.1007/978-3-031-19839-7_13

Article Title

Colorization for in situ Marine Plankton Images

Article Publication Date

27-Oct-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025
When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025

Watch and Listen: Underwater Acrobatics of the World’s Smallest Marine Dolphin Featured in Science Magazine

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Hemolytic Disease in Newborns: Key Insights

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.