• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Targeting cancer without destroying healthy T-cells

Bioengineer by Bioengineer
November 15, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A unique approach to targeting the abnormal T-cells that cause T-cell lymphomas could offer hope to patients with the aggressive and difficult-to-treat family of cancers, finds a study involving researchers from Cardiff University.

The team of researchers, working with biopharmaceutical company Autolus Ltd, have discovered a method of targeting the cancer without destroying healthy T-cells, essential to the immune system.

Lymphomas arise when immune cells, called lymphocytes, that protect us against germs, become cancerous. There are two types of lymphocytes: B-cells and T-cells. Recent developments, including immunotherapies, have transformed the once fatal diagnosis of B-cell lymphoma into a curable condition but there remains a critical need for new therapeutic approaches to the rarer, but often more aggressive, T-cell lymphoma.

A key challenge of treating these cancers has been to identify a way of eliminating the abnormal T-cells whilst sparing the healthy ones that play an essential role in providing protection against infections.

T-cells recognize and remove germs using a molecule on their surface called the T-cell receptor. This receptor is made using one of two duplicated copies of the T-cell receptor gene, called C1 or C2, at random. As a result, the T-cells we use to fight off viruses and other germs are a near equal mixture of cells using either the C1 or C2 genes. When a T-cell becomes cancerous all the cancer arises from a single cell so that the cancer is either all C1 or C2.

The research team have engineered a way to eliminate T-cells based on whether they use the C1 or C2 gene. The team demonstrate that targeting of C1 T-cells can kill C1 cancers while leaving all normal C2 T-cells unharmed so that they can take care of infections.

Professor Andrew Sewell from Cardiff University's School of Medicine said: "We wouldn't last a week without the essential job our T-cells perform by protecting us from infection. The devastating effects of low numbers of just one type of T-cell are all too evident in HIV/AIDS.

"T-cell lymphomas are particularly difficult to treat without damaging essential, healthy T-cells that are vital to the immune system. The new and innovative approach that Autolus have developed now allows potential for removal of all cancer cells without causing any damage to half of our T-cells. Since T-cells select use of the C1 or C2 gene at random, this remaining half of T-cells are capable of providing immunity to the pathogens we encounter every day."

Dr Justine Alford from Cancer Research UK, said: "This study has demonstrated it's possible to kill cancerous T-cells but importantly spare some healthy ones, opening up exciting new treatment possibilities. T cells are a vital part of our immune system and our survival; that's why when a patient has a cancer in these cells, it would cause serious harm to use a therapy that targets both healthy T cells and cancerous ones."

Dr Georgios Trichas, in Wellcome's Innovations team, added: "This is an exciting development that could lead to new potential therapies for T-cell cancers. Previous efforts in the field have been held back by difficulties in distinguishing between normal and cancerous T-cells. Importantly, the researchers have not only been able to identify the cancerous T-cells but also shown how existing technologies that redirect the immune system can be adapted using this discovery to target and kill these cells. Although very promising, the study was done in vitro and in mouse models so more research is needed to prove it is safe and effective before it can be tested in the clinic.

###

The full manuscript 'Targeting T-cell receptor β-constant for immunotherapy of T-cell malignancies' can be found in Nature Medicine.

The research funders include Wellcome and Cancer Research UK.

Media Contact

Julia Short
[email protected]
44-029-208-75596
@cardiffuni

http://www.cardiff.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Major Global Study Finds Beta-Blockers Unnecessary for Post-Infarction Patients with Normal Cardiac Function

November 9, 2025
blank

Simulating Cochlear Implant Sound for Hearing Experience

November 9, 2025

Stenting All Blocked Arteries Lowers Cardiovascular Death Risk Compared to Treating Only the Culprit Artery in Heart Attack Patients

November 9, 2025

Targeted Vitamin D3 Supplementation Halves Risk of Repeat Heart Attacks, New Intermountain Health Study Reveals

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Major Global Study Finds Beta-Blockers Unnecessary for Post-Infarction Patients with Normal Cardiac Function

Simulating Cochlear Implant Sound for Hearing Experience

Stenting All Blocked Arteries Lowers Cardiovascular Death Risk Compared to Treating Only the Culprit Artery in Heart Attack Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.