• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Targeting breast cancer metabolism to fight the disease

Bioengineer by Bioengineer
November 28, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(PHILADELPHIA) – How does a cancer cell burn calories? New research from Thomas Jefferson University shows that breast cancer cells rely on a different process for turning fuel into energy than normal cells. The results were recently published in the Journal of Biological Chemistry.

"Our finding is part of a growing interest in studying the metabolic function of cancer," says Ubaldo Martinez-Outschoorn, M.D., Assistant Professor in the Department of Medical Oncology at Thomas Jefferson University and researcher at the Sidney Kimmel Cancer Center at Jefferson. "The better we understand how cancers thrive, the better we'll be able to cut off the energy supply they need for survival."

Dr. Martinez-Outschoorn and colleagues looked at a protein that they knew changed the metabolism of breast cancer cells. The protein TIGAR (short for TP53 inducible glycolysis and apoptosis regulator) diminished the cell's ability to create energy via the most common biochemical pathway — converting sugar to energy via glycolysis. But it was unclear how this change in metabolism altered the cancer cell, or how the cell was getting the energy it needed to survive.

Through a series of cellular and mouse studies, the researchers demonstrated that breast cancer cells with a higher-than-normal abundance of the TIGAR protein were more aggressive and were able to grow faster than breast cancer cells that had normal amounts of TIGAR. But if the cells weren't using glycolysis to drive this growth, what were they using?

Dr. Martinez-Outschoorn and colleagues showed that when cells expressed TIGAR, they swap their metabolic pathway and become dependent on mitochondria for energy production. Interestingly, the high levels of TIGAR produced by cancer cells also changed the metabolism of the cells that surround and support breast cancer, but with the opposite metabolic effect. Rather than increase their dependence on mitochondrial energy production, TIGAR made these supporting cells dependent on glycolysis and increased tumor growth. Previous studies had shown that glycolytic supporting cells in tumors make breast cancer more aggressive.

"The fact that 70-80 percent of breast cancers show high levels of TIGAR presents an opportunity," says Dr. Martinez-Outschoorn. "There are already a number of therapies that block mitochondrial metabolism that we could use to try to 'starve' breast cancer cells."

Two drugs approved for other indications — metformin, an antidiabetes therapy and doxycycline, an antibiotic — are known to also block mitochondrial metabolism. When the researchers used these drugs to block mitochondrial metabolism in high-TIGAR-expressing breast cancer cells, they saw a reduction in the cancer's aggressive properties.

"Because these drugs are already approved, they have passed safety testing in humans. If they indeed help reduce tumor growth in patients, as our preliminary studies suggest, these drugs could be available to patients as a combination treatment with other drugs much sooner than new therapies," says Martinez-Outschoorn.

To that end, Dr. Martinez-Outschoorn is collaborating with Jennifer Johnson, M.D., Ph.D., Assistant Professor of Medical Oncology and Adam Berger, M.D., Professor of Surgery at Jefferson on a clinical trial that will test the effect of metformin and doxycycline on breast cancers in women prior to surgery. The study will collect and analyze the tumors of patients to see if these drugs that inhibit mitochondrial metabolism might have an effect on tumor biology (clinicaltrials.gov # NCT02874430).

###

Article reference: Y.H. Ko, et al., "TIGAR Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer," J Biol Chem. DOI: 10.1074/jbc.M116.740209, 2016.

Funding: This work was supported by the National Cancer Institute (NCI) of the National Institutes of Health (NIH), under Award Number NCI K08-CA175193, NCI 5 P30 CA-56036, Instituto de Salud Carlos III – FIS (PI13/0096) and Fondo Europeo de Desarrollo Regional (FEDER).

About Jefferson

Jefferson, through its academic and clinical entities of Thomas Jefferson University and Jefferson Health, including Abington Health and Aria Health, is reimagining health care for the greater Philadelphia region and southern New Jersey. Jefferson has 23,000 people dedicated to providing the highest-quality, compassionate clinical care for patients, educating the health professionals of tomorrow, and discovering new treatments and therapies to define the future of care. With a university and hospital that date back to 1824, today Jefferson is comprised of six colleges, nine hospitals, 34 outpatient and urgent care locations, and a multitude of physician practices throughout the region, serving more than 100,000 inpatients, 373,000 emergency patients and 2.2 million outpatient visits annually.

For more information and a complete listing of Jefferson services and locations, visit http://www.jefferson.edu.

Media Contact

Gail Benner
[email protected]
215-955-2240
@JeffersonUniv

http://www.jefferson.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

hUCMSCs Revive Ovarian Function Through Angiopoietin Rebalance

November 18, 2025

Breakthroughs in Immune Evasion in Triple-Negative Breast Cancer

November 18, 2025

Key Skills for Telemedicine Physicians in India

November 18, 2025

Magnesium Levels Linked to VTE in Hospitalized Elderly

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

hUCMSCs Revive Ovarian Function Through Angiopoietin Rebalance

Breakthroughs in Immune Evasion in Triple-Negative Breast Cancer

Key Skills for Telemedicine Physicians in India

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.