• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tailor-made membranes for the environment

Bioengineer by Bioengineer
November 30, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Forschungszentrum Jülich

In technical systems, membranes can be used to separate gases – in a manner that is more efficient and cost-effective than with established methods. Membrane systems thus enable the separation of harmful greenhouse gases with comparatively low losses. At the same time, they also make it possible to obtain high-purity hydrogen for clean energy generation and storage, making ceramic membranes a key technology for transforming the energy sector (Energiewende).

One option for separating hydrogen from gas mixtures is a two-phase membrane. "This consists of two ceramic materials. The individual grains are only a thousandth of a millimetre in size and exhibit both ionic and electronic conductivity," explains Dr. Mariya Ivanova from the Juelich Institute of Energy and Climate Research. The components of the hydrogen – protons and electrons – are thus transported individually through the membrane. On the other side, they combine to form high-purity hydrogen. This is made possible by tailor-made vacancies in the crystal lattice of the ceramics, which are occupied by protons. These protons, driven by pressure differences and temperature, are conducted through the material of the membrane. "They dock onto a hydrogen ion and jump in the direction of the lower pressure to the next hydrogen ion, from vacancy to vacancy, until they form elementary hydrogen again on the other side," says Mariya Ivanova. "The electrons are transported through the second component of the ceramic and ensure that charge equalization occurs."

However, the method still has a number of weak points. For example, high temperatures are needed for hydrogen separation, thus meaning it requires a lot of energy. In addition, the membranes investigated so far are not stable and become unusable in a carbonaceous environment. The hydrogen flow rate is also not yet high enough. Nevertheless, the researchers headed by Mariya Ivanova have made some significant progress: by inserting foreign atoms into the crystal lattice, their membrane is more stable and can be used at lower temperatures. However, the greatest achievement is the increased hydrogen flow. "It is nearly twice as high as in all other cases that have been documented to date," says a delighted Ivanova.

The Juelich membranes used for the measurements are only the size of a 10 cent coin and half a millimetre thick. "It is still too early to be thinking about an industrial application," explains Ivanova. "We will continue to conduct research, searching for a suitable material with a high flow rate and stability as well as low costs. The next step will be to increase component size to make it fit for industrial application." The researchers are initially aiming to achieve an area of ten by ten square centimetres.

###

Media Contact

Dr. Regine Panknin
[email protected]
49-246-161-9054
@fz_juelich

http://www.fz-juelich.de

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Upward Bullying in China’s Nurse Managers

November 3, 2025
Quantum Network Entanglement Verified Without Measurement Devices

Quantum Network Entanglement Verified Without Measurement Devices

November 3, 2025

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

November 2, 2025

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Upward Bullying in China’s Nurse Managers

Quantum Network Entanglement Verified Without Measurement Devices

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.