• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Tackling industrial emissions begins at the chemical reaction

by
July 25, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Sydney researchers are proposing a new way to curb industrial emissions, by tapping into the “atomic intelligence” of liquid metals to deliver greener and more sustainable chemical reactions.  

Liquid gallium in a Petri dish

Credit: University of Sydney/Philip Ritchie

University of Sydney researchers are proposing a new way to curb industrial emissions, by tapping into the “atomic intelligence” of liquid metals to deliver greener and more sustainable chemical reactions.  

Despite global efforts towards renewable energy and electrification, chemical production accounts for approximately 10-15 percent of total greenhouse gas emissions. More than 10 percent of the world’s total energy is used in chemical factories, with these numbers rising.  

This is due to the large amounts of energy required to cause chemical reactions used to make different products. Published today in Science, researchers have developed a road map which demonstrates how chemical processing can be transformed by changing the nature in which reactions occur.  

Head of School of Chemical Engineering Professor Kourosh Kalantar-Zadeh, who led the research said: “People often forget that chemical reactions are at the heart of all we have and use; almost all modern products are created using some sort of chemical reaction. From high-grade plastics for medical implements through to ammonia for agriculture, the current process in which they are created requires significant amounts of energy leading to growing greenhouse gas emissions.  

Numerous chemical reactions, including those for green hydrogen production, the synthesis of chemicals with specific structures such as polymers used to make household products, and the decomposition of various materials like microplastics and persistent substances including per- and polyfluoroalkyl substances (PFAS) are all potential targets for improvement using liquid metals.  

“Using liquid metals for chemical reactions is still a very new concept; most chemical reactions still rely on decades old processes. Tapping into the ‘atomic intelligence’ of metals in liquid form to drive reactions remains largely unexplored but holds huge potential for transforming the future of chemical industries,” said Professor Kalantar-Zadeh.  

His team last year tested a technique using liquid metals they hope will replace energy-intensive chemical engineering processes that use solid catalysts – solid metals or compounds that cause chemical reactions – to create a range of products including plastics, fertilisers, fuels and feedstock. His team recently demonstrated the possibility of using liquid metal alloys derived from numerous metals for hydrogen production.

The team’s approach means chemical reactions can be incited at lower temperatures, unlike current techniques which require metals to be heated to up to several thousand degrees centigrade. Liquid metals instead dissolve catalytic metals – metals that cause reactions – like tin, copper, silver and nickel at low temperatures, creating alloys that promote chemical reactions at low energy. 

DECLARATION:

The authors declare no competing interests.



Journal

Science

DOI

10.1126/science.adn5871

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

The atomic intelligence of liquid metals

Article Publication Date

25-Jul-2024

COI Statement

This work was supported by the Australian Research Council Laureate Fellowship (grant FL180100053). K.K.-Z. and J.T. contributed equally to this work. T.D. helped strengthen the discussions.

Share12Tweet8Share2ShareShareShare2

Related Posts

Catalytic C(sp2) Expansion of Alkylboranes

Catalytic C(sp2) Expansion of Alkylboranes

August 4, 2025
Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

August 3, 2025

Bright Excitons Enable Optical Spin State Control

August 3, 2025

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    54 shares
    Share 22 Tweet 14
  • Predicting Colorectal Cancer Using Lifestyle Factors

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Debating Microplastics in Blood: New Analysis Sparks Discussion

Psychedelics and Non-Hallucinogenic Analogs Activate the Same Receptor—But Only to a Certain Extent

Urinary Tract Cancer Trends in Golestan Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.