• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Systems analysis of kidney metabolism reveals unexpected links to viral protection

Bioengineer by Bioengineer
December 2, 2022
in Biology
Reading Time: 3 mins read
0
Schematic summary from the Scientific article
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Our kidney filters 180 liters of blood every day and retains nutrients through a process called ‘endocytosis’ and through active transport in the kidney cells. In a new international study, an international team of researchers, led by Markus Rinschen from Aarhus Institute of Advanced Studies and the Department of Biomedicine at Aarhus University, investigated how this process of ‘endocytosis’ is regulated by a very central enzyme, the ‘lipid kinase’ VPS34, in mice. This lipid kinase is involved in vesicular trafficking and endocytic sorting of membrane proteins. A process that is crucial for the body to obtain the right nutrients, but also to block out the unhealthy ones, such a viruses.

Schematic summary from the Scientific article

Credit: Science Signaling: DOI: 10.1126/scisignal.abo7940

Our kidney filters 180 liters of blood every day and retains nutrients through a process called ‘endocytosis’ and through active transport in the kidney cells. In a new international study, an international team of researchers, led by Markus Rinschen from Aarhus Institute of Advanced Studies and the Department of Biomedicine at Aarhus University, investigated how this process of ‘endocytosis’ is regulated by a very central enzyme, the ‘lipid kinase’ VPS34, in mice. This lipid kinase is involved in vesicular trafficking and endocytic sorting of membrane proteins. A process that is crucial for the body to obtain the right nutrients, but also to block out the unhealthy ones, such a viruses.

Multiomics – combining multiple datasets
The researchers have applied a new method of ‘multiomics,’ an approach where multiple data sets are combined during analysis to provide a comprehensive view of cell physiology. This approach is hypothesis-free but can quantify the functions of many transporters and enzymes as well as their interactions – the entire system. This multiomics analysis of the study showed that a lack of lipid kinase in proximal tubule cells in mice lowered the abundance of nutrient transporters on the cell surface, which was associated with increased urinary loss of lipids, amino acids, sugars and proteins. In addition, the number of viral entry receptors on the cell surface was reduced. Accordingly, treatment with a lipid kinase inhibitor reduced the entry of the virus SARS-CoV-2 in cultured proximal tubular cells and human kidney organoids.

A gatekeeper for viral infections – Lipid kinase
The results of the study show that blocking of the enzyme lipid kinase could be used to treat diseases in which limiting the retention of nutrients gives clinical benefit, such as kidney cancer or diabetes, or to block a viral infection of the kidney.

‘Our primary goal in this study was to gather and organize novel knowledge of the fundamental processes of cell physiology. Although this is hypothesis-free, these comprehensive large-scale datasets can be central to understand medical problems. In this case, we ultimately improved targeted drug treatment for instance for kidney related diseases or infections,’ said Markus Rinschen, first-author of the study and Associate Professor at the Aarhus Institute of Advanced Studies and the Department of Biomedicine at Aarhus University. ‘Of course, more knowledge needs to be gathered before any conclusions regarding human relevance can be made.’

The study was a collaboration between researchers at Aarhus University, the University Hospital Hamburg Eppendorf, University of Kiel and University of Michigan.



Journal

Science Signaling

DOI

10.1126/scisignal.abo7940

Method of Research

Experimental study

Subject of Research

Animals

Article Title

VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney

Article Publication Date

29-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Placental DNA Mutations, Stress, and Infant Emotions

Placental DNA Mutations, Stress, and Infant Emotions

October 18, 2025
Unraveling Gene Co-Expression in Trypanosoma cruzi Life Cycle

Unraveling Gene Co-Expression in Trypanosoma cruzi Life Cycle

October 18, 2025

Mapping Hippocampal Proteins in Alzheimer’s Disease Model

October 18, 2025

Exploring ADP-Ribosyltransferases in Pathogenic Legionella

October 18, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1260 shares
    Share 503 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    282 shares
    Share 113 Tweet 71
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    118 shares
    Share 47 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Carbon Reduction Strategies with OCO and ICOS

Placental DNA Mutations, Stress, and Infant Emotions

Navigating Young Adulthood: Autism Milestones and Supports

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.