• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Synthetic two-sided gecko’s foot could enable underwater robotics

Bioengineer by Bioengineer
April 26, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Geckos are well known for effortlessly scrambling up walls and upside down across ceilings. Even in slippery rain forests, the lizards maintain their grip. Now scientists have created a double-sided adhesive that copies this reversible ability to stick and unstick to surfaces even in wet conditions. They say their development, reported in ACS' Journal of Physical Chemistry C, could be useful in underwater robotics, sensors and other bionic devices.

Inspired by geckos' natural ability to attach and release their feet from surfaces as slick as glass, scientists have made a number of adhesives that can similarly stick and unstick with changes in temperature, light or magnetic field, but mostly in dry conditions. One promising approach to expanding this to underwater scenarios involves hydrogels that can swell and shrink in response to different acidity levels and other conditions. These volume differences change the gels' friction and stickiness levels. Feng Zhou, Daniele Dini and colleagues recently developed a method to integrate nanostructured hydrogel fibers on an inorganic membrane. The material's friction and stickiness levels changed with pH even when wet. The researchers wanted to further expand on this strategy to make the adhesive work on two sides.

The researchers first made the inorganic membrane double-faced and then added the hydrogel nanofibers on both sides. Testing showed that the material exhibited ultra-high friction and adhesion in an acidic liquid (pH of 2), and would rapidly switch to a state of ultra-low friction and stickiness when a basic solution (pH of 12) was added. Additionally, the two sides of the material can stick and slide independently of each other.

###

The authors acknowledge funding from the National Natural Science Foundation of China, and the U.K.'s Engineering and Physical Sciences Research Council.

The abstract that accompanies this study is available here.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Inside the Neutrophil Compartment’s Complex Architecture

December 12, 2025
Lactic Acid Fermented Rice Germ Boosts Skin Health

Lactic Acid Fermented Rice Germ Boosts Skin Health

December 12, 2025

Pediatric Intercostal Neuralgia Treated with Cryoneurolysis

December 12, 2025

Multimodal Foundation Model Advances Whole-Slide Pathology

December 12, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    205 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inside the Neutrophil Compartment’s Complex Architecture

Lactic Acid Fermented Rice Germ Boosts Skin Health

Pediatric Intercostal Neuralgia Treated with Cryoneurolysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.