• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Synthetic energy metabolism enables twin engine for cell

Bioengineer by Bioengineer
October 27, 2022
in Biology
Reading Time: 2 mins read
0
Schematic illustration of the two-engine design
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Prof. YU Tao from the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, has proposed a novel synthetic energy system that supports yeast cell growth and the production of highly reduced chemicals.

Schematic illustration of the two-engine design

Credit: SIAT

A research team led by Prof. YU Tao from the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, has proposed a novel synthetic energy system that supports yeast cell growth and the production of highly reduced chemicals.

The research was published in Nature Metabolism on Oct. 27.

Cell metabolism has been optimized for self-proliferation instead of production of specific chemicals in the evolutional process. In contrast, rational design plus metabolic reconfiguration using modern biotechnology enables the transformation of cells into high-yield factories.

For production of highly reduced chemicals, e.g., free fat acids (FFAs) as a kind of biofuel, cells need to consume energy and overcome the stoichiometric constraints of chemical composition between the substrate and target product. Thus, rewiring reductive/energy metabolism becomes an effective solution.

In this study, the synthetic energy system contains three modules: the pentose phosphate (PP) cycle, the trans-hydrogenase cycle and the external respiratory chain. The PP cycle is a repeated decarboxylation cycle, in which large amounts of reductants, e.g., nicotinamide adenine dinucleotide phosphate (NADPH), are generated. Then the trans-hydrogenase cycle can irreversibly transfer one NADPH into one nicotinamide adenine dinucleotide (NADH) in the cytoplasm. Through the external respiratory chain, energy can be generated from cytosolic NADH.

The researchers tested an evolved pyruvate decarboxylase-deficient strain E1B. After overexpressing the PP cycle and the blocking of glycolysis, the strain could not grow on glucose because of excess NADPH accumulation. Expression of the trans-hydrogenase cycle restored normal cell growth. In the context of the synthetic energy system, cell growth improved instead of being weakened as the endogenous energy system was down-regulated, indicating that the system can become an alternative for supplying energy for better cell growth.

As for reductive chemical production, a succinate titer of approximately 3.3 g/L was achieved. Integrated with a ratio fine-tuned between precursors, cofactors and energy, the synthetic energy system raised the yield of FFAs to 40% of the maximum theoretical yield, which is the highest yield reported for Saccharomyces cerevisiae and demonstrates the potential of the system for industrial scale production.

“Energy metabolic reprogramming demonstrates that despite extensive regulation of catabolism in yeast, it is still possible to rewire their energy metabolism,” said Prof. YU.



Journal

Nature Metabolism

DOI

10.1038/s42255-022-00654-1

Article Title

Metabolic reconfiguration enables synthetic reductive metabolism in yeast

Article Publication Date

27-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Four Exome Capture Platforms on DNBSEQ

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025
EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Models for Urothelial Neoplasm Classification Validated

Rotavirus RNA in Wastewater Reflects US Infection, Vaccination

Exploring N-Succinyl Chitosan Gel: Synthesis and Safety

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.